US009305072B2

a2 United States Patent 10) Patent No.: US 9,305,072 B2
Urano (45) Date of Patent: Apr. 5, 2016
(54) INFORMATION STORAGE SYSTEM AND (56) References Cited
DATA REPLICATION METHOD THEREOF
U.S. PATENT DOCUMENTS
(75) Inventor: Akihiro Urano, Tokyo (JP) 025604 B2 42011 Vosshall et al
A K osshall et al.
. 2008/0235321 Al 9/2008 Matsuo
(73) Assignee: HITACHL LTD., Tokyo (JP) 2013/0031403 Al* 1/2013 Mordani etal. 714/4.11
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 199 days. P 2008-234445 A 10/2008
Jp 2010-501942 A 1/2010
(21) Appl. No.: 14/110,868
OTHER PUBLICATIONS
(22) PCT Filed: Feb. 22, 2012
Consistent hashing and random trees: distributed caching protocols
g g P!
(86) PCT No.: PCT/IP2012/054280 forrelieving hot spots on the World Wide Web, D. Karger, E. Lehman,
§371 (©)(1) T. Leighton, M. Levine, D. Lewin and R. Panigrahy, In: Proc. 29th
), (4) Daté: Oct. 9, 2013 Ann. ACM Symp. On Theory of Computing, 1997, pp. 654-663.
(Continued)
(87) PCT Pub. No.: 'WO02012/140957
PCT Pub. Date: Oct. 18, 2012 Primary Examiner — William Spieler
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
US 2014/0032496 Al Jan. 30, 2014 (57) ABSTRACT
(30) Foreign Application Priority Data An exemplary information storage system of the present
invention includes a plurality of information storage nodes
Apr. 13, 2011 (JP) 2011-089420 and an administration node. The administration node deter-
mines the defined number of information storage nodes for
(51) Int.CI. storing the data having the identical content to each of
GOG6F 17/30 (2006.01) received data. The received data belong to the defined number
GOGF 11/16 (2006.01) of categories, respectively. In a case where use of a first
gzgi i/lo/g 0 (388281) information storage node in the plurality of information stor-
(01) age nodes is interrupted, each storage node replicates the data
(52) US.Cl g P g p
e of an identical content to data stored in the first information
CPC oo GO6F 1.7/30575 (2013.01); G06F.3/0614 storage node whose category is pre-associated with a cat-
(2013.01); GOGF 11,2053 (2013.01); GO6F £ the data stored in the first inf tion st P
17/30283 (2013.01); GOG6F 17/30584 (2013.01) fgory.gf © t?‘ a Store m de r? lt grma lodl.l ¥ Otrage nfl ©
(58) Field of Classification Search o an information storage node selected according to a prede-

CPC ..ot GO6F 17/30575; GOGF 17/30283;
GOG6F 17/30584; GOGF 11/1662; GOGF 3/0614
See application file for complete search history.

DATA "TCKYO"
(SECOND REPLICA)

10

termined sequence.

12 Claims, 18 Drawing Sheets

DATA "TOKYO"
(ORIGINAL DATA)

10

DATA "TOKYQ"
(FIRST REPLICA)

US 9,305,072 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Dynamo: amazon’s highly available key value store, G. DeCandia, D.
Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubrmanian, P. Vesshall, W. Vogels : In: SOSP. pp. 205-220
(2007).

A Scalable Content-Addressable Network, Sylvia Ratnasamy, Paul
Francis, Mark Handley, Richard Karp, Scott Shenker,
SIGCOMM’01, Aug. 27-31, 2001, San Diego, California, USA.
Michio Irie et al., “A Load Balancing and Replica Partitioning
Method for Consistent Hashing”, IEICE Technical Report, Oct. 7,
2010, vol. 110, No. 224, pp. 69 to 74.

Michio Irie et al., “An ID Allocation Scheme for Consistent Hashing
Considering Data Replication between Nodes”, IEICE Technical
Report, Nov. 12, 2009, vol. 109, No. 276, pp. 1 to 4.

Yoshiki Shimada, Twitter, Facebook ga Saiyo suru NoSQL System,
Cassandra Jissen Nyumon, Web+DB Press, Sep. 25, 2010, vol. 58,
pp. 47 to 58.

Avinash Lakshman et al., Cassandra—A Decentralized Structured
Storage System, ACM SIGOPS Operating Systems Review, vol. 44,
Issue 2, ACM, Apr. 2010, pp. 35-40.

Brad Anderson, Dynamo and CouchDB Clusters, [online], Aug. 13,
2010, [retrieval date May 21, 2012], Internet <URL:http://blog.
cloudant.com/dynamo-and-couchdb-clusters/>.

* cited by examiner

U.S. Patent Apr. 5, 2016 Sheet 1 of 18 US 9,305,072 B2

DATA"TOKYQ”
(ORIGINAL DATA)
101 110
07 - NODE 1
DATA "TOKYO? - @ 102
(SECOND REPLICA) =
110 121F
W20
M

105

103

104

110

DATA"TOKYO”
(FIRST REPLICA)

US 9,305,072 B2

U.S. Patent Apr. 5, 2016 Sheet 2 of 18
209
ya
INFORMATION STORAGE SYSTEM
202
NODE /
203
201
NODE f NODE /
204
205~ | COMMUNICATION ADMINISTRATION |/~
CONTROLLER NODE
206
CLIENT CLIENT
207 208

U.S. Patent

Apr. 5,2016 Sheet 3 of 18 US 9,305,072 B2
/(207
CLIENT
INPUT DEVICE |~ 271 979 PROCESSOR
/(274 /(273
DISPLAY NETWORK INTERFACE
278
0 | | S
MAIN STORAGE DEVICE — —
27 SECONDARY
275 STORAGE DEVICE
READ-WRITE s
CLIENT PROGRAM
276/(

U.S. Patent Apr. 5, 2016 Sheet 4 of 18 US 9,305,072 B2

FIG. 4

204

ADMINISTRATION NODE

241
NETWORK
INTERFACE 242-"| PROCESSOR
249
O | [s
243
TN
MAIN STORAGE DEVICE < 3
S SECONDARY
045 244 STORAGE DEVICE
ye
NODE MANAGEMENT
PROGRAM 248

NODE MANAGEMENT TABLE

246

READ/WRITE
MANAGEMENT PROGRAM

247

DATA RELOCATION S~—— _—
MANAGEMENT PROGRAM

U.S. Patent Apr. 5, 2016 Sheet 5 of 18 US 9,305,072 B2

s~ 201
INFORMATION STORAGE NODE
211
e
NETWORK
INTERFACE 219-"| PROCESSOR
0 | | 28
213
T
MAIN STORAGE DEVICE il T
] SECONDARY
214 STORAGE DEVICE
s 217
DATA RELOCATION
PROCESSING PROGRAM DATA STORAGE TABLE
218~
216
READ-WRITE
PROCESSING PROGRAM
—’/

U.S. Patent Apr. 5, 2016 Sheet 6 of 18 US 9,305,072 B2

FIG. 6
248
NODE MANAGEMENT TABLE
il 602 603
NODENAME | “AGHNGVALUE RANGE | INFORMATION

NODE 1 226 ALIVE Ve 604
NODE 2 535 ALIVE 605
NODE 3 842 ALIVE | 606
NODE 4 1231 ALIVE |~ 607
NODE 5 2145 ALIVE |~ 608
NODE 6 2352 ALIVE 609
NODE 7 3125 ALIVE |~ 610
NODE 8 4231 ALIVE |~ 611
NODE 9 4845 D | - 612
NODE 10 5252 ALIVE |~ 613
NODE 11 6625 susstiuten PO
NODE 12 6752 L
Ve 616

NODE 999 64523 ALIVE |~ 617
NODE 1000 65123 ALIVE 018

U.S. Patent Apr. 5, 2016 Sheet 7 of 18 US 9,305,072 B2

Vs 218
DATA STORAGE TABLE
T01 702 703 04 705
ORIGINAL FIRST REPLICA | SECOND REPLICA
KEY NODE STORAGE NODE | STORAGENoDE | VALUE
7006
TOKYO NODE 2 NODE 4 NODE 7 SUNNY P~
PARIS NODE 2 NODE 521 NODE 543 RAINY | 707
708
LONDON NODE 2 NODE 36 NODE 339 cLoupy P
BERLIN NODE 2 NODE 965 NODE 145 snowy 709
710
WASHINGTON| NODE 62 NODE 2 NODE 4 suny
SAN JOSE NODE 4 NODE 2 NODE 305 suny oM
SHANGHAI | NODE 475 NODE 234 NODE 2 cer V12
Va 713
Vs 714
HIROSHIMA | NODE 754 NODE 854 NODE 2 CLOUDY
Vs 715
NAGASAKI | NODE 352 NODE 120 NODE 2 RAINY

U.S. Patent

Apr. 5,2016 Sheet 8 of 18 US 9,305,072 B2
Ve 218
DATA STORAGE TABLE
801 f802 803 Ve 804 r 805
ORIGINAL FIRST REPLICA SECOND REPLICA

KEY NODE STORAGE NODE STORAGE NODE VALUE
SAN JOSE NODE 4 NODE 2 NODE 305 SUNNY f806
TOKYO NODE 2 NODE 4 NODE 7 SUNNY f807
f808

OTTAWA NODE 475 NODE 4 NODE 256 CLEAR
WASHINGTON NODE 62 NODE 2 NODE 4 SUNNY f809
810

U.S. Patent Apr. 5, 2016 Sheet 9 of 18 US 9,305,072 B2

>
//,5901
DETECT THAT NODE N HAS DIED
S902
CHANGE LIFE-AND-DEATH INFORMATION FIELD FOR /

NODE N IN NODE MANAGEMENT TABLE TO “DEAD”

IN NODE MANAGEMENT TABLE, INSTRUCT NODES WHOSE S903
LIFE-AND-DEATH INFORMATION FIELD IS “ALIVE" TO _f

EXTRACT DATA RELATED TO NODE N AND TO REPLICATE IT
IN NODE ADJACENT IN CLOCKWISE DIRECTION

I
,/’8904
WAIT TILL REPLICATIONS IN ALL NODES END

CHANGE LIFE-AND-DEATH INFORMATION FIELD
FOR NODE N TO “SUBSTITUTED”

$905
s

S906
INSTRUCT NODE ADJACENT TO NODE N f

IN CLOCKWISE DIRECTION TO COLLECT DATAFOR
WHICH NODE N WAS ORIGINALLY RESPONSIBLE

DELETE ENTRY FOR NODE N IN S907
NODE MANAGEMENT TABLE WHEN ADJACENT NODE /
COLLECTS ALL DATA FOR WHICH NODE N WAS
ORIGINALLY RESPONSIBLE

- —

U.S. Patent Apr. 5, 2016 Sheet 10 of 18

FIG. 10

US 9,305,072 B2

(START)

FROM DATA STORAGE TABLE, EXTRACT ENTRY IN
WHICH ORIGINAL NODE IS DEAD NODE N AND
FIRST REPLICA STORAGE NODE IS ITSELF

FROM DATA STORAGE TABLE,
EXTRACT ENTRY IN WHICH FIRST REPLICA
STORAGE NODE IS DEAD NODE N AND
SECOND REPLICA STORAGE NODE IS ITSELF

FROM DATA STORAGE TABLE,
EXTRACT ENTRY IN WHICH SECOND REPLICA
STORAGE NODE IS DEAD NODE N AND
ORIGINAL NODE IS ITSELF

ASSEMBLE ENTRIES EXTRACTED IN ABOVE 3 STEPS
AND STORE THEM AS “RELATED DATA’

| ~—S1004

C END)

U.S. Patent Apr. 5,2016

FIG. 11
C START D

CALCULATE HASHING VALUE FROM KEY,
AND BY USING IT, SEARCH ORIGINAL NODE IN
NODE MANAGEMENT TABLE

CALCULATE HASHING VALUE BY COMBINING “1”
TO KEY, AND BY USING IT, SEARCH CANDIDATE
FOR FIRST REPLICA STORAGE NODE IN
NODE MANAGEMENT TABLE

S$1103

ORIGINAL NODE

Sheet 11 of 18

US 9,305,072 B2

- 1101

- s1102

STORAGE NODE IN CLOCKWISE DIRECTION

AND CANDIDATE FOR NO
FIRST REPLICA STORAGE
NODE ARE EQUAL S0
. S1104" | FIRST REPLICA STORAGE NODE
IS CANDIDATE NODE FOR FIRST
FIRST REPLICA STORAGE NODE IS NODE
ADJACENT TO CANDIDATE FOR FIRST REPLICA REPLICA STORAGE NODE

<
<

CALCULATE HASHING VALUE BY COMBINING 2
TO KEY, AND BY USING IT, SEARCH CANDIDATE
FOR SECOND REPLICA STORAGE NODE IN
NODE MANAGEMENT TABLE

N

S1107

IS CANDIDATE FOR
SECOND REPLICA STORAGE
NODE EQUAL TO ORIGINAL NODE
OR FIRST REPLICA
STORAGE NODE ?

NEW CANDIDATE FOR SECOND REPLICA
STORAGE NODE IS NODE ADJACENT TO LAST
CANDIDATE FOR SECOND REPLICA STORAGE

NODE IN CLOCKWISE DIRECTION

<

| 51108

| 51106

[*

SECOND REPLICA STORAGE NODE IS
CANDIDATE NODE FOR SECOND REPLICA

STORAGE NODE

I
END

|~ $1109

U.S. Patent Apr. 5, 2016 Sheet 12 of 18 US 9,305,072 B2

FIG. 12

C START)

CLIENT TRANSMITS KEY TO ADMINISTRATION NODE, | S1201
REQUESTING IT TO SHOW 3 NODES IN I~/
WHICH DATA SHOULD BE STORED

FROM KEY, ADMINISTRATION NODE DETERMINES 51202
ORIGINAL NODE, FIRST REPLICA STORAGE NODE, ~/
AND SECOND REPLICA STORAGE NODE

51203

ADMINISTRATION NODE
CONFIRMS IN NODE MANAGEMENT TABL
THAT ORIGINAL NODE, FIRST REPLICA STORAGE
NODE, AND SECOND REPLICA
STORAGE NODE ARE “ALIVE’

NO

ADMINISTRATION NODE REPLIES TO CLIENT THAT S1204
NODES INTO WHICH DATA SHOULD BE WRITTENARE p~/

ORIGINAL NODE, FIRST REPLICA STORAGE NODE,
AND SECOND REPLICA STORAGE NODE

S$1209
J
CLIENT INSTRUCTS 3 NODES TO WRITE *KEY”,
"VALUE”, “ORIGINAL NODE NAME”, “FIRST WRITING FAILS
REPLICA STORAGE NODE NAME”, AND /\5/1205
“SECOND REPLICA STORAGE NODE NAME’
RECEIVED FROM NO
3 NODES REPLY ON
NORMAL WRITING
51208
$1207
"\ WRITING IS SUCCESSFUL WRITING FAILS
|

C END)

U.S. Patent Apr. 5,2016

Fl
START

o D

Sheet 13 of 18 US 9,305,072 B2

G. 13

CLIENT TRANSMITS KEY TO
ADMINISTRATION NODE, REQUESTING
IT TO SHOW NODES FROM WHICH
DATA SHOULD BE READ

f81301

ADMINISTRATION NODE SEARCHES
NODE FROM WHICH DATA SHOULD BE
READ, FROM NODES IN ALIVE STATE

/81302

NODE FROM
WHICH DATA SHOULD BE

51303

YES

READ HAS BEEN FOUND

ADMINISTRATION NODE SEARCHES
NODE FROM WHICH DATA SHOULD
BE READ, FROM BACKUP
DESTINATION NODE OF NODES
IN SUBSTITUTED STATE

fS1304

|

ad

51305

NODE FROM
WHICH DATA SHOULD BE

YES

READ HAS BEEN FOUND

fS1 308

ADMINISTRATION NODE REPLIES
TO CLIENT THAT NO NODE FROM
WHICH DATA SHOULD BE READ
HAS BEEN FOUND

ADMINISTRATION NODE RETURNS
TO CLIENT NODE FROM WHICH
DATA SHOULD BE READ

| 51306

CLIENT FAILS IN PROCESS
TO READ

-~ $1309

CLIENT USES KEY TO READ
VALUE FROM NODE FROM WHICH

| 51307
DATA SHOULD BE READ

A

END

C D

U.S. Patent Apr. 5, 2016 Sheet 14 of 18 US 9,305,072 B2

FIG. 14
(START)

FROM KEY, DETERMINE ORIGINAL

NODE, FIRST REPLICA STORAGE $1401
NODE AND SECOND REPLICA |/

STORAGE NODE

ORIGINAL NODE IS YES

“ALIVE”

jf81408

DETERMINE THAT ORIGINAL
NODE IS NODE FROM WHICH
DATA SHOULD BE READ

FIRST REPLICA
STORAGE NODE IS
ALIVE

YES

/,81407

DETERMINE THAT FIRST
REPLICA STORAGE NODE IS
NODE FROM WHICH DATA
SHOULD BE READ

SECOND REPLICA VES
STORAGE NODE IS | 51406
ALIVE e
DETERMINE THAT SECOND
REPLICA STORAGE NODE IS
NODE FROM WHICH DATA
SHOULD BE READ

NO NODE FROM WHICH
DATA SHOULD BE READ /81405
IS FOUND

A A A

RETURN NODE NAME OF

NODE FROM WHICH DATA | - $1409

SHOULD BE READ, AS
RETURN VALUE

(END)

U.S. Patent Apr. 5, 2016 Sheet 15 of 18 US 9,305,072 B2
C START)
FROM KEY, DETERMINE ORIGINAL 1501
NODE, FIRST REPLICA STORAGE |/~
NODE, AND SECOND REPLICA
STORAGE NODE
ORIGINAL NODE IS YES
“SUBSTITUTED”
DETERMINE THAT NODE
31508 ADJACENT TO FIRST
] REPLICA STORAGE NODE
IS NODE FROM WHICH
DATA SHOULD BE READ
FIRST REPLICA YES
STORAGE NODE IS
“SUBSTITUTED"
Ja S1507
DETERMINE THAT NODE
ADJACENT TO SECOND
REPLICA STORAGE NODE
IS NODE FROM WHICH
DATA SHOULD BE READ
SECOND REPLICA YES
STORAGE NODE IS
“SUBSTITUTED”
Ve S1506
S1505
ya DETERMINE THAT NODE
ADJACENT TO ORIGINAL
NODE FROM WHICH DATA SHOULD NODE IS NODE FROM WHICH
BE READ IS NOT FOUND DATA SHOULD BE READ
[
RETURN NODE NAME OF NODE $1509
FROM WHICH DATA SHOULD BE |/~

READ, AS RETURN VALUE

END

- D

U.S. Patent Apr. 5, 2016 Sheet 16 of 18 US 9,305,072 B2

FIG. 16

- —

ADMINISTRATION NODE DETERMINES END VALUE OF |~ S1601
RESPONSIBLE HASHING VALUE RANGE OF NODE X

ADMINISTRATION NODE INSTRUCTS NODES WHOSE S1602
LIFE-AND-DEATH INFORMATION FIELD IN NODE MANAGEMENT TABLE f
IS “ALIVE” TO EXTRACT DATA TO WHICH NODE X IS RELATED AND
TO REPLICATE IT IN NODE X

EACH INSTRUCTED NODE EXTRACTS DATATO IS1 603
WHICH NODE X IS RELATED AND REPLICATES IT IN NODE X

51604
ADMINISTRATION NODE WAITS FOR END OF f
REPLICATION TO NODE X BY ALL INSTRUCTED NODES

IN NODE MANAGEMENT TABLE, ADMINISTRATION NODE ADDS ENTRY S1605
FOR NODE X BETWEEN NODE N AND NODE N+1, ENTERS END VALUE | /™
IN RESPONSIBLE HASHING VALUE RANGE, AND
ENTERS “ALIVE” IN LIFE-AND-DEATH INFORMATION FIELD

ADMINISTRATION NODE INSTRUCTS NODE N+1 TO DELETE DATA FOR f81606
WHICH NODE INFORMATION STORAGE X IS NEWLY RESPONSIBLE

- =

U.S. Patent Apr. 5, 2016 Sheet 17 of 18 US 9,305,072 B2

FIG. 17

C START >

FROM DATA STORAGE TABLE, EXTRACT ENTRY IN WHICH ORIGINAL
NODE 1S NODE N+1 AND FIRST REPLICA STORAGE NODE IS ITSELF,
CALCULATE HASHING VALUE FOR KEY OF EACH DATA, AND
EXTRACT DATA IN RESPONSIBLE HASHING VALUE RANGE OF NODE X

| 51701

FROM DATA STORAGE TABLE, EXTRACT ENTRY IN WHICH
FIRST REPLICA STORAGE NODE IS NODE N+1 AND SECOND REPLICA
STORAGE NODE IS ITSELF, CALCULATE HASHING VALUE FOR
KEY OF EACH DATA, AND EXTRACT DATA IN RESPONSIBLE HASHING
VALUE RANGE OF NODE X

|- §1702

FROM DATA STORAGE TABLE, EXTRACT ENTRY IN WHICH SECOND
REPLICA STORAGE NODE IS NODE N+1 AND ORIGINAL NODE IS ITSELF,
CALCULATE HASHING VALUE FOR KEY OF EACH DATA, AND EXTRACT
DATA IN RESPONSIBLE HASHING VALUE RANGE OF NODE X

51703

ASSEMBLE ENTRIES EXTRACTED IN ABOVE 3 STEPS AND
STORE THEM AS "RELATED DATA’

51704
e

< END >

U.S. Patent Apr. 5, 2016 Sheet 18 of 18 US 9,305,072 B2

FIG. 18
< START)

DETECT THAT NODE M HAS DIED DURING PROCESSING OF STEP S204

CHANGE LIFE-AND-DEATH INFORMATION FIELD OF | - S1802
NODE M IN NODE MANAGEMENT TABLE TO “DEAD”

INSTRUCT NODES WHOSE LIFE-AND-DEATH INFORMATION FIELD
IN NODE MANAGEMENT TABLE IS “ALIVE" TO EXTRACT |~ 51803
DATA RELATED TO NODE N AND RELATED TO NODE M,

AND TO REPLICATE IT IN ADJACENT NODE

I
WAIT TILL REPLICATIONS OF ALL NODES END

|~ 51804

INSTRUCT NODES WHOSE LIFE-AND-DEATH INFORMATION FIELD IN
NODE MANAGEMENT TABLE IS “ALIVE” TO EXTRACT DATARELATED | ~ 51805
TO NODE M, WHICH HAS NOT BEEN REPLICATED,

AND TO REPLICATE IT IN ADJACENT NODE

| 51806
WAIT TILL REPLICATIONS OF ALL NODES END

CHANGE LIFE-AND-DEATH INFORMATION FIELD FOR | 51807
NODE M IN NODE MANAGEMENT TABLE TO “SUBSTITUTED"

INSTRUCT NODE ADJACENT TO NODE M TO COLLECT DATA FOR
WHICH NODE M WAS ORIGINALLY RESPONSIBLE, | 51808
FROM NODES WHOSE LIFE-AND-DEATH INFORMATION FIELD
IN NODE MANAGEMENT TABLE IS “ALIVE"
|

| 51809
IN NODE MANAGEMENT TABLE, DELETE ENTRY FOR NODE M

US 9,305,072 B2

1
INFORMATION STORAGE SYSTEM AND
DATA REPLICATION METHOD THEREOF

CLAIM OF PRIORITY

The present application claims priority from Japanese
patent application JP2011-89420 filed on Apr. 13, 2011, the
content of which is hereby incorporated by reference into this
application.

BACKGROUND

The present invention relates to an information storage
system and a data replication method thereof, and particu-
larly, relates to data replication in an information storage
system including a plurality of information storage nodes.

In a computing system, information required by a system is
often stored in a database. A relational database is one of the
most widely known databases. A relational database offers
excellent functions such as data coupling and consistency of
data in transactions. On the one hand, the relational database
does not necessarily have high scalability.

With advancement of the distribution technology over
Internet such as the cloud technology, a system is required
that can increase the number of servers on demand, while
enabling a multitude of servers to perform high-speed distrib-
uted processing. As a technology that can meet such aneed, a
key value store is attracting attention. A key value store stores
apair of akey and a value. A system specifies a key of a target
value to acquire the value. By changing, depending on a key
value, a destination server (node) in which a key is saved
depending on a key value, the key value store can distribute
data and save them in a plurality of servers. Thus, the key
value store can easily construct a scale-out system which
processes a large amount of data. The consistent hashing is
known as a technique to determine a responsible node
depending on a key value (See Non-Patent Literature 1, for
example.)

In addition, Non-Patent Literature 2 discloses a technology
to achieve high availability in a key value store. Specifically,
the literature discloses replications of data by a plurality of
hosts to achieve high availability and durability. Each data
item is replicated and stored in N units of hosts which are set
with respect to each instance. A coordinator node is assigned
to each key. The coordinator node is responsible for replica-
tion of a data item which is assigned thereto. In addition to
storing of each of the keys for which it is responsible in its
own memory, the coordinator node replicates the keys to
adjacent N-1 units of nodes in a clockwise direction in a ring
arrangement.

Non-Patent Literature 2 discloses a method for adding a
new node X and a method for removing a node from a system.
By adding the new node X, a specific key range is assigned to
X. Some existing nodes, which have retained keys newly
assigned to the node X, no longer need to have those keys. The
existing nodes transfer to the node X the keys which they no
longer need to keep. Similarly, when a node is removed from
a system, keys are relocated in reverse steps to the node
addition.

In Non-Patent Literature 3, in order to improve data avail-
ability, one key is mapped to k points in a coordinate space by
means of k different hash functions so as to replicate and store
one key value pair in k different nodes in a system.

Non-Patent Literature 1: Consistent hashing and random
trees: distributed caching protocols for relieving hot spots on
the World Wide Web, D. Karger, E. Lehman, T. Leighton, M.

10

40

45

50

60

2

Levine, D. Lewin and R. Panigrahy, In: Proc. 29th Ann. ACM
Symp. On Theory of Computing, 1997, pp. 654-663

Non-Patent Literature 2: Dynamo: amazon’s highly avail-
able key value store, G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, W. Vogels : In: SOSP. Pp. 205-220 (2007)

Non-Patent Literature 3: A Scalable Content-Addressable
Network, Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, Scott Shenker, SIGCOMM’01, Aug. 27-31,
2001, San Diego, Calif., USA

SUMMARY

In a distributed data store, it is important to keep the rep-
lication value of each data when a node is added or deleted. In
a system including a plurality of nodes, when one of data is
replicated and stored in some nodes in the system, the repli-
cation value means the number of nodes in which the one of
data is stored.

For example, a system includes a multitude of nodes and
data stored in 3 nodes in the system is in the condition that
“the replication value is 3”. One of the 3 nodes stores original
data, while other 2 nodes store replicated data. When one of
the 3 nodes fails and becomes unusable, the number of nodes
which store the data decreases by 1, and thus the number of
data replications is reduced to 2.

As noted above, Non-Patent Literature 1 describes a con-
sistent hashing technique. However, since the consistent
hashing of Non-Patent Literature 1 stores information only in
1 node, the information is lost if the node fails and becomes
unusable.

In Non-Patent Literature 2, identical data are stored in N
units of nodes. Specifically, identical data are stored in a
certain coordinator node and in following N-1 units of nodes.
This enables the data to be read from any of the nodes fol-
lowing the coordinator node even if the coordinator node
becomes unusable.

However, all replicated data of original data stored in the
coordinator node is stored in the nodes following it. Thus,
when the replication value decreases due to a node failure,
only nodes around a failed node contribute to processing of
recovering the replication value, while nodes remote from the
failed node cannot contribute to the process. Therefore the
nodes in the neighborhood of the failed node must transmit
and receive much data to recover the replication value.

Thus, in Non-Patent Literature 2, only a small number of
nodes in the system contribute to the recovery process to
recover the replication value, thus resulting in a disbalance in
the amount of processing over the system. Accordingly,
response time fluctuates depending on whether or not a node
processing a request from a client is performing the recovery
process, resulting in a fluctuation in the response time of a
system. Furthermore, since the recovery process needs to be
performed only by the small number of nodes, it takes much
time before the replication value is recovered.

Now, a specific example will be shown. An example of a
system will be described in which the number of nodes is
1000, each node is connected to a network of 1 Gbps (Giga Bit
per Second), original data of 1 TB (Tera Byte) per node is
retained (that is to say, data of 1 TB exists in a responsible
range of each node), and the replication value is kept to 3.

Each of nodes has original data of 1 TB, areplica 1 of 1 TB,
and areplica 2 of 1 TB. In fact, a total amount of data in each
node is 3 TB. For illustrative purposes, a number from node 1
to node 1000 is assigned to each of the 1000 nodes in a
clockwise direction. For example, a first replica of the origi-
nal data retained in a node 1 (this shall be referred to as data

US 9,305,072 B2

3

in a node 1’s responsible range) is retained in a node 2, and a
second replica is retained in a node 3.

In other words, the node 3 retains a replica of the second
original data of the node 1, a first replica of the original data
of'the node 2, and the original data of the node 3. In fact, the
node 3 retains the data in the node 1’s responsible range, data
in anode 2’s responsible range, and data in a node 3’s respon-
sible range. Similarly, a node 4 retains a second replica of the
original data of the node 2, a first replica of the original data
of'the node 3, and the original data of the node 4. So do other
nodes.

Now suppose that a node 5 becomes unusable due to a
failure. A node 5’s responsible range is newly added to a node
6’s responsible range. In fact, the node 6 treats data which it
retains as a first replica of the original data of the node 5, as the
original data of the node 6. The node 6 further treats data
which it retains as a second replica of the node 4, as a first
replica of the node 4. Then, the node 6 newly replicates data
in the node 3’s responsible range from any node (node 3 or
node 4), and retains the data as a second replica of the node 3.

Similarly, a node 7 needs to newly retain data in the node
4’s responsible range, and a node 8 needs to newly retain data
in the node 5’s responsible range. Here, for example, data in
the node 3’s responsible range is replicated from the node 3 to
the node 6, data in the node 4’s responsible range is replicated
from the node 4 to the node 7, and data in a range for which the
node 5 is conventionally responsible (which is now data of a
part of the node 6’s responsible range) is replicated from the
node 6 to the node 8. (The “processing of recovering the
original replication value” shall be simply referred to as a
“recovery process”.)

Then, the node 3 must transmit 1 TB which corresponds to
one-thirds of the data of 3 TB retained by it. Similarly, the
node 4 and the node 6 must also transmit 1 TB which corre-
sponds to one-thirds of the data retained by them. Further-
more, the node 6, node 7, and node 8 must respectively
receive new data of 1 TB.

In particular, the node 6’s responsible range is doubled. In
addition, the node 6 must transmit data of 1 TB to the node 8
while receiving data of 1 TB from the node 3, thus often
becoming highly-loaded. In addition, time for recovering the
replication value to 3 is time for transferring data of 1 TB.
Since the system uses the 1 Gbps network, the recovery
process takes about 2 hours and 13 minutes. From the stand-
point of data redundancy, it is very long time. It is desirable to
recover the replication value more quickly.

In addition, a failure probability of an external storage
device represented by a hard disk drive is higher as load
increases. During the recovery process described above,
although the node 3, the node 4, the node 6 and the node 7
retain precious data for which the replication value is “2”,
their accesses to the storage device increase. (Shortly, the load
on the storage device increases.)

The high the load becomes, the more the failure probability
increases. If any of the nodes mentioned above fails, data of 1
TB whose replication value is “1” is generated. Since the node
retaining the data becomes further highly-loaded, the failure
probability thereof further increases. Consequently, if the
node fails, the data are permanently lost. Therefore, it is
important to cut off the chain of the increasing failure prob-
ability.

As described above, Non-Patent Literature 3 discloses
storage of identical data in k units of nodes (1 original data
and k-1 replicas) by means of k different functions. The
literature does not disclose addition and deletion of a node,
however. If a certain node becomes unusable due to a failure,
the replication value of data stored in that node decreases to

10

15

20

25

30

35

40

45

50

55

60

65

4

k-1 in the entire system. Furthermore, if the k units of nodes
fail, the data will be lost from the system.

The present invention has been made in light of such cir-
cumstances. One object thereof is to promptly recover the
replication value when the replication value decreases due to
a failure or deletion of a node, and the like.

To solve the problems, for, example, the configuration
disclosed in the claims is employed. The present invention
includes means to solve the problems and an example is an
information storage system storing received data. The infor-
mation storage system includes a network, a plurality of
information storage nodes communicatably connected by the
network, and an administration part communicatably con-
nected with the plurality of information storage nodes. Each
of'the received data is replicated to a defined number of data
having an identical content, and stored in one of the plurality
of information storage nodes. The administration part is con-
figured to provide the replicated data having the identical
content with different categories. The administration part is
configured to make a determination of information storage
nodes for storing the data having the identical content and
provided with the different categories from the plurality of
information storage nodes. The administration part is config-
ured to make the determination so that data which correspond
to respective data belonging to one category and to be stored
by one information storage node, have identical contents to
the respective data and belong to a different category from the
one category, are distributed in a plurality of information
storage nodes other than the one information storage node.
The administration part is configured to make the determina-
tion by substituting some or all of information contained in
the received data into arithmetic expressions defined for
respective categories. In a case where use of a first informa-
tion storage node in the plurality of information storage nodes
is interrupted, each of the plurality of information storage
nodes is configured to extracts, from data stored in the each of
the plurality of information storage nodes, one of data which
has an identical content to data stored in the first information
storage node and whose category is pre-associated with a
category of the data stored in the first information storage
node. Each of the plurality of information storage nodes is
configured to replicate the extracted data to an information
storage node selected according to a predetermined sequence.

According to an aspect of the present invention, in an
information storage system including a plurality of informa-
tion storage nodes, if the number of the information storage
nodes which store data decreases, time necessary for data
replication to increase the decreased replication value can be
reduced. Any problem, configuration or effect other than
those described above will become apparent through the fol-
lowing description of embodiments.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a view schematically showing a logical configu-
ration of information storage nodes of a first embodiment.

FIG. 2 is a block diagram showing a configuration example
of'an information storage system of the first embodiment and
peripheral devices thereof.

FIG. 3 is a block diagram schematically showing a con-
figuration example of a client of the first embodiment.

FIG. 4 is a block diagram schematically showing a con-
figuration example of an administration node of the first
embodiment.

FIG. 5 is a block diagram schematically showing a con-
figuration example of the information storage node of the first
embodiment.

US 9,305,072 B2

5

FIG. 6 is a view showing an example of a node manage-
ment table for managing the responsible hash value ranges
and life-and-death information of respective information
storage nodes in the first embodiment.

FIG. 7 is an example of a data storage table which stores
data of a node 2 in the first embodiment.

FIG. 8 is an example of a data storage table which stores
data of a node 4 in the first embodiment.

FIG. 9 is a flow chart showing a processing when a node N
dies in the first embodiment.

FIG. 10 is a flow chart of extracting data related to the node
N, from the data owned by the information storage nodes
themselves, in the first embodiment.

FIG. 11 is a flow chart of determining an information
storage node which the date is stored in or written into, from
a key value in the first embodiment.

FIG. 12 is a flow chart showing an example of a processing
in which a client writes a value by means of a key, in the first
embodiment.

FIG. 13 is a flow chart showing an example of a processing
in which the client reads information from the information
storage system, in the first embodiment.

FIG. 14 is a flow chart of finding an information storage
node from which data should be read, by using a key, from
nodes in ALIVE state, in the first embodiment.

FIG. 15 is a flow chart showing an example of processing
in which the information storage node from which data
should be read is found by using a key from backup destina-
tion information storage nodes of information storage nodes
in SUBSTITUTED state, in the first embodiment.

FIG. 16 is a flow chart showing a processing of inserting
other information storage node between 2 information stor-
age nodes in the first embodiment.

FIG. 17 is a flow chart showing a processing of extracting
the data related to the inserted information storage node from
the data stored by the information storage node.

FIG. 18 is a flow chart showing a processing when another
information storage node dies while data relocation resulted
from death of an information storage node is being executed,
in a second embodiment.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Hereinafter, embodiments of the invention are described
with reference to the accompanying drawings. For clear
description, specific details of the following description and
the drawings are omitted and simplified where appropriate.
Further, throughout the drawings, the same eclements are
denoted by the same reference symbols, and redundant
description is omitted where necessary for clear description.
<First Embodiment>

In the following, a first embodiment will be described. In
the embodiment, a distributed data store (distributed infor-
mation storage system) is described. In a distributed data
store, original data is replicated, and the original data and one
or more replicated data are stored in different information
storage nodes. This allows high-speed processing and high
failure resistance.

The present invention is preferable for a key value store
which manages data with a pair of 2 data as a unit. Then, an
example of a key value store is described in the embodiment.
The present invention is also applicable to any distributed
system other than the key value store. The key value store
stores a pair of a key and a value. A user specifies a key of a
target value to acquire the value (and the key).

10

15

20

25

30

35

40

45

50

55

60

65

6

Depending on a key value, a distributed key value store
changes a destination server (node) in which original data and
replicas thereof (replicated data of the original data) are
saved. With reference to FIG. 1, a method with which a
system of the embodiment determines nodes to store original
data and replicas thereof will be described. FIG. 1 describes
an example in which a storage destination of data “Tokyo”
110, which is a key, is determined. Selected servers respec-
tively store a pair of the key and a value (an original pair or a
replicate of the pair) (not shown). In the description of FIG. 1,
a mention for the value is omitted.

FIG. 1 shows an example of a logical configuration of
information storage nodes (hereinafter also referred to as
nodes) included in the information storage system of the
embodiment. The system is provided with a plurality of infor-
mation storage nodes. FIG. 1 illustrates the ring-like arranged
7 information storage nodes from an information storage
node 1 (101) to an information storage node 7 (107). The
arrangement of the information storage nodes shows arrange-
ment of nodes (logical positions) in a logical space for deter-
mining the information storage nodes which store data (origi-
nal data and replicas), and does not mean a physical
arrangement of the information storage nodes in the system.

FIG. 1 schematically shows a method for assigning user
data (key) “Tokyo” 110 to the information storage nodes in
the system. An original node for the data “Tokyo” 110 is a
node 2 (102), which stores the original data 111.

A first replica storage node is a node 4 (104), which stores
a first replica (data “Tokyo™) 112. A second replica storage
node is a node 7 (107), which stores a second replica (data
“Tokyo™) 113.

The information storage system uses 3 different arithmetic
expressions to determine the information storage nodes for
storing data of each of 3 categories (the original data, the first
replica, and the second replica) of the user data. Using the
arithmetic expressions enables acquisition of different com-
puted values from the user data.

For example, the information storage system uses a hash
function to determine the information storage nodes to which
the original data and the 2 replicas are assigned. As a hash
function, MD5, SHA-1, SHA-256, and the like are well
known. For example, the information storage system of the
embodiment prepares a difterent hash function for each of the
original data, the first replica, and the second replica, and
determines the information storage nodes for storing the
original data and the replicas, respectively, according to a
hash value of the key (the data “Tokyo” in this example) based
on each hash function.

Alternatively, the information storage system calculates 3
different values from the key with a specified computing
method (a combination of different values, for example), and
substitutes the values into identical hash functions to obtain 3
different hash values.

Thus, types of hash functions needed to determine the
information storage nodes for storing data can be reduced by
calculating different values from a key associated with each
of data categories (original data, a first replica, a second
replica). Different hash functions may also be applied to some
categories in a method for calculating different substituted
values. In addition, the information storage nodes for storing
data may be determined by using functions different from the
hash functions.

On the circle (line showing logical positions of the infor-
mation storage nodes) in FIG. 1, numbers from a minimum
hash value to a maximum a hash value have been assigned in
advance in the clockwise direction. A hash value means a
value obtained by substituting a value into a hash function.

US 9,305,072 B2

7

Each of the node 1 (101) to the node 7 (107) arranged on the
circle has a responsible range of hash values.

For example, the node 2 (102) is responsible for a range of
hash values from the node 1 (101) to the node 2 (102) on the
circle. A responsible node for storing data is determined, for
example, by reference to a table in which responsible ranges
and responsible nodes are associated with hash values of data.
A logical position of each information storage node may
differ by category of data.

Even if original data is identical for any 2 data, the first
replica storage nodes may not always be identical, and rather
differs in many cases. Similarly, the second replica storage
nodes often differ.

For example, the first replica storage node for the data
“Tokyo” 110 is the node 4 (104), and the second replica
storage node therefor is the node 7 (107). However, other data
for which an original storage node is the node 2 (102) may be
assigned to a node which is different from the information
storage node 4 (104), as the first replica storage node, and to
anode which is different from the information storage node 7
(107), as the second replica storage node. For example, for
data “Paris”, although an original node therefor is the node 2,
the first replica storage nodes are the nodes 5, 2, 1, and the
second storage nodes are the nodes 5, 4, 3.

Thus, a plurality of the first replicas of different original
data of respective nodes are distributed to and stored in a
plurality of other nodes. Similarly, a plurality of the second
replicas of different original data are also distributed to and
stored in a plurality of other nodes.

In the example of FIG. 1, a hash value of the data “Tokyo”
110 enters between the information storage node 1 (101) and
the information storage node 2 (102). Therefore, the node 2
(102) is an original storage node (node storing the original
data) of the data 110. The responsible hash value range of the
node N (N is a natural number which is below a total number
of'nodes), which is other than the information storage node 1,
is between a value obtained by adding 1 to an end value of the
node N-1’s responsible hash value range and an end value of
the node N’s responsible hash value range.

The information storage node 1’s responsible range is a
combination of both ranges from a minimum hash value to an
end value of the information storage node 1’s responsible
hash value and from a value obtained by adding 1 to an end
value of a last node’s responsible hash value to a maximum
hash value. In FIG. 1, data 121A to data 121F shown by
circles respectively represent a set of data which each infor-
mation storage node replicates to other information storage
nodes (adjacent information storage nodes in FIG. 1), in
response to removal of the node 2 (102) from the system due
to a failure or any other reason. Data to be replicated 121 A to
121F includes the original data, the first replica and the sec-
ond replica.

According to specified regulations, respective information
storage nodes replicate data related to the information storage
node, use of which is interrupted, to other information storage
nodes. The data to be replicated will be described below. In
the example of FIG. 1, the first replica 112 in the node 4 (104)
is included in the data 121B to be replicated, while the second
replica 113 inthenode 7 (107) is not included in the data 121E
to be replicated.

In the example of FIG. 1, although all the information
storage nodes as shown, excluding the node 2 (102), are
illustrated to replicate the data to other information storage
nodes, all information storage nodes in the system do not
necessarily have data to be replicated.

Respective information storage nodes secure storage areas
for temporarily replicating data accompanying removal of the

10

15

20

25

30

35

40

45

50

55

60

65

8

information storage node. In FIG. 1, a storage area 124
secured in the node 5 (105) is given a symbol by way of
example. Similarly, other information storage nodes secure
storage areas for storing replicated data. A method for using
the storage areas will be described below.

Thus, the information storage system stores a plurality of
data which are identical to the user data. In the above
example, it stores 3 identical data of the original data, the first
replica, and the second replica. The replication value depends
on a system design.

Thus, the 3 identical data to be stored are given categories
(original, a first replica, and the like) which are different from
each other, and belong to different groups, basically, an origi-
nal data group, a first replica group, and a second replica
group.

As described above, given a plurality of data of any cat-
egory (original data, for example) to be stored in one infor-
mation storage node, a plurality of identical data of other
category (firstreplica, for example) corresponding thereto are
not concentrated in one other information storage node, but
arranged so that they are distributed to and stored in a plurality
of information storage nodes. By using different arithmetic
expressions in determination of the information storage
nodes for data in each data category, identical data of different
categories are distributed to and stored in a plurality of other
information storage nodes. The arithmetic expressions men-
tioned above include a hash function.

Next, with reference to FIG. 2, an overview of a configu-
ration of the information storage system of the embodiment
will be given. FIG. 2 is a block diagram schematically show-
ing a configuration example of the information storage sys-
tem 209 and peripheral devices thereof in the embodiment.
The information storage system 209 comprises information
storage nodes (servers) 201, 201, 203, an administration node
(administration server) 204, and a communication controller
205. While FIG. 2 shows 3 information storage nodes 201,
202, 203 by way of example, an actual system typically
comprises more than 100 information storage nodes.

Each of the information storage nodes 201, 202, 203 is
communicatably connected via the communication control-
ler 205, and the administration node 204 is further commu-
nicatably connected with the information storage nodes 201,
202, 203 via the communication controller 205. The informa-
tion storage system 209 is connected to an external network
206 by the communication controller 205. Clients 207, 208
are connected to the external network 206 and can commu-
nicate with the information storage nodes 201, 202, 203 and
the administration node 204 via the communication control-
ler 205.

In this system, a user operates the clients 207, 208 to write
data into the information storage nodes 201, 202, 203 and
then reads data from the information storage nodes 201, 202,
203.

When writing data, the clients 207, 208 transmit a “key” to
the administration node 204 via the network 206 and the
communication controller 205, requesting it to show 3 nodes
to which data (a pair of a key and a value) is to be written. In
response to the request involving the key from the clients 207,
208, the administration node 204 determines the nodes to
store data from a value of the received key according to
specified calculations, and returns identifiers of the deter-
mined nodes to the clients 207, 208.

The clients 207, 208 transmit the original data and the
replica to the instructed nodes. Each node receives the data
via the network 206 and the communication controller 205
and stores it.

US 9,305,072 B2

9

Differently, the original node may allow the first and sec-
ond replica nodes to store replicates (a first replica and a
second replica) of the original data. In this configuration, in
response to a request for a storage node from the clients 207,
208, the administration node 204 returns only an identifier of
the original node to the clients 207, 208.

The clients 207, 208 transmit the key value pair to the
specified original node together with an instruction for writ-
ing data and write (store) the key value pair to the original
node. Upon receipt of the instruction for writing data and the
data, the original node stores the received data in its storage
device, and determines nodes respectively storing the first and
the second replicas by either inquiring to the administration
node 204 or with an approach similar to that of the adminis-
tration node 204. The original node transmits the instruction
for writing data and the data to the determined nodes via the
communication controller 205. Upon receipt, the nodes
respectively store the data in the storage devices.

When reading data, the clients 207, 208 communicate a
“key” to the administration node 204, requesting it to show
nodes from which the data should be read. In response to the
request involving the key from the clients 207, 208, the
administration node 204 identifies from the key the nodes
which store the data according to the specified computation.
The administration node 204 returns to the clients 207, 208,
identifiers of the nodes from which the data is read. The
clients 207, 208 transmit a read request together with the key
to the nodes specified by the administration node 204 and
receives the key value pair from the nodes.

As described above, using the clients 207, 208, the user
performs writing and reading of data. FIG. 3 is a block dia-
gram schematically showing a configuration of the client 207.
The client 208 has a similar configuration to the client 207.
The client 207 is a computing machine, including an input
device 271, a processor 272, a network interface 273, a dis-
play 274, a main storage device 275, and secondary storage
device 276. They are communicatably connected by a bus
278.

The client 207 is connected to the network 206 via the
network interface 273 to communicate with other computing
machines. The user inputs necessary information with the
input device 271 (a mouse and a keyboard, for example) and
can visually recognize necessary information with the display
274.

The processor 272 implements a predetermined function of
the client 207 by executing a program stored in the main
storage device 275. The main storage device 275 stores the
program to be executed by the processor 272 and data neces-
sary for execution of the program. The program includes a
read-write client program 277, in addition to an OS (Operat-
ing System) not shown. The processor 272 can include a
plurality of chips and a plurality of packages.

For convenience of the description, although the read-write
client program 277 is shown in the main storage device 275,
a program is typically loaded from a storage area of the
secondary storage device 276 to a storage area of the main
storage device 275. The storage devices 275, 276 can act as
one storage device. The secondary storage device 276 is a
storage device including a non-volatile persistent storage
medium for storing a program and data needed to implement
the predetermined function of the client 207. The secondary
storage device 276 may be an external storage device con-
nected via a network.

Using the read-write client program 277, the user commu-
nicates with the administration node 204 and the information
storage nodes 201, 202, 203. In response to the read-write
client program 277, input of the user with the input device

5

10

15

20

25

30

35

40

45

50

55

60

65

10

271, or input from other program, the user transmits informa-
tion necessary for writing and reading of data to the admin-
istration node 204 and the information storage nodes 201,
202,203 and receives information therefrom. The display 274
displays data received from the information storage nodes
201, 202, 203.

Next, with reference to FIG. 4, a configuration of the
administration node 204 will be described. FIG. 4 is a block
diagram schematically showing a configuration of the admin-
istration node 204. The administration node 204 is a comput-
ing machine which manages the information storage nodes
201, 202, 203 and processing thereof. The administration
node 204 may consist of a plurality of computing machines
(computer systems). The administration node 204 manages
accesses (writing of data and reading of data) to the informa-
tion storage nodes 201, 202, 203, and manages processing
involved in addition and deletion of a node operating in the
system.

The administration node 204 includes a network interface
241, a processor 242, a main storage device 243, and a sec-
ondary storage device 244. They are communicatably con-
nected by a bus 249. The processor 242 implements a prede-
termined function of the administration node 204 by
executing a program stored in the main storage device 243.
The processor 242 can include a plurality of chips and a
plurality of packages.

The main storage device 243 stores a program to be
executed by the processor 242 and data necessary for execu-
tion of the program. A program includes a node management
program 245, a read-write management program 246, and a
data relocation management program 247, in addition to the
OS not shown.

The node management program 245 performs processing
of'managing information storage nodes, and manages respon-
sible ranges of the information storage nodes included in the
system, status thereof, and the like. The read-write manage-
ment program 246 performs processing of managing writing
of data to the information storage nodes and reading of data
(access to the nodes). The data relocation management pro-
gram 247 manages relocation of data among nodes, involved
in addition/deletion of a node. The processing to be per-
formed by these programs 245 to 247 will be described below
in detail. For convenience of the description, in FIG. 4, the
programs 245 to 247 are shown to be in the main storage
device 243. Typically, a program is loaded from a storage area
of the secondary storage device 244 to a storage area of the
main storage device 243. The storage devices 243, 244 can act
as one storage device.

The secondary storage device 244 is a storage device
including a non-volatile persistent storage medium for stor-
ing a program and data needed to implement the predeter-
mined function of the administration node 204, in addition to
a node management table 248 as shown. The node manage-
ment table 248 will be described below with reference to FIG.
6. Alternatively, the secondary storage device 244 may be an
external storage device connected via a network. The admin-
istration node 204 may execute the read-write client program
277 to accept user operations via an input/output device.

Next, with reference to FIG. 5, a configuration of the infor-
mation storage node 201 will be described. Other information
storage nodes 202, 203 also have an identical configuration to
the information storage node 201, and a description thereof
will be omitted. FIG. 5 is a block diagram schematically
showing a configuration of the information storage node 201.
The information storage node (server) 201 is a computing
machine which stores a key value pair. The information stor-
age node may include a plurality of computing machines.

US 9,305,072 B2

11

The information storage node 201 includes a network inter-
face 211, a processor 212, a main storage device 213, and a
secondary storage device 214. They are communicatably
connected by a bus 215. The processor 212 implements a
predetermined function of the information storage node 201
by executing a program stored in a storage area of the main
storage device 213.

The main storage device 213 stores a program to be
executed by the processor 212 and data necessary for execu-
tion of the program. The program includes a read-write pro-
cessing program 216 and a data relocation processing pro-
gram 217, in addition to the OS not shown. The processor 212
can include a plurality of chips and a plurality of packages.

The read-write processing program 216 performs process-
ing of writing and reading data as per a request from the
clients 207, 208. The data relocation processing program 217
performs data relocation among nodes involved in deletion/
addition of a node in the system. The processing to be per-
formed by these programs 216,217 will be described below in
detail.

For convenience of the description, in FIG. 5, the programs
216, 217 are shown to be in the main storage device 213.
Typically, a program is loaded from a storage area of the
secondary storage device 214 to a storage area of the main
storage device 213. The storage devices 213, 214 can act as
one storage device.

The secondary storage device 214 is a storage device
including a non-volatile persistent storage medium for stor-
ing a program and data needed to implement the predeter-
mined function of the information storage node 201, in addi-
tion to a data storage table 218 as shown. The data storage
table 218 will be described below with reference to FIG. 7.
The secondary storage device 214 may be an external storage
device connected via a network.

As described above, the programs are executed by the
processor so as to perform defined processes by means of the
memories and a communication port (communication
device). Therefore, a description in this and other embodi-
ments in which a subject is a program may be a description in
which a subject is a processor. Alternatively, processing
executed by a program is processing to be performed by a
computing machine in which the program operates. By oper-
ating in accordance with the program, the processor operates
as a function unit to implement the predetermined function.

At least a part of a program may be implemented by dedi-
cated hardware. A program can be installed in each comput-
ing machine by a program distributing server or a persistent
storage medium which can be read by the computing
machine. It can be stored in a non-volatile memory of each
computing machine.

FIG. 6 is a view showing an example of the node manage-
ment table 248 stored in the administration node 204. The
node management table 248 is a table for the node manage-
ment program 245 (administration node 204) to manage each
information storage node, specifically, a responsible hash
value range and life-and-death status of each information
storage node. Each row (record) stores information on one
node, and the node management table 248 of the example
manages 1000 nodes. Shortly, the information storage system
209 includes 1000 nodes.

A column 601 for “Node Name” stores node names of
respective nodes. Specifically, a row (entry) 604 is a descrip-
tion of a node whose “node name” is a “node 1”. A row 605 is
a description of a node whose “node name” is a “node 2”. A
row 606 is a description of a node whose “node name” is a
“node 3”. A row 607 is a description of a node whose “node

35

40

45

50

12

name” is a “node 4”. A row 608 is a description of a node
whose “node name” is a “node 5”.

A row 609 is a description of a node whose “node name” is
a“node 6”. A row 610 is a description of a node whose “node
name” is a “node 7”. A row 611 is a description of a node
whose “node name” is a “node 8”. A row 612 is a description
of a node whose “node name” is a “node 9”. A row 613 is a
description of a node whose “node name” is a “node 10”.

A row 614 is a description of a node whose “node name” is
a“node 11”. A row 615 is a description of anode whose “node
name” is a “node 12”. A row 616 indicates the mid-entries are
omitted in FIG. 6. A row 617 is a description of a node whose
“node name” is a “node 999”. A row 618 is a description of a
node whose “node name” is a “node 1000”.

A column 602 for “End Value in Responsible Hash Value
Range” stores a last value of a responsible hash value range of
each node. Specifically, an “end value in a responsible hash
value range” of the “node 1” is “226”. An “end value in a
responsible hash value range” of the “node 2” is “535”. The
fact that the “end value in the responsible hash value range” of
the “node 1” being “226” means that the “end value in the
responsible hash value range” of the “node 2 is 227 (which is
the value following the end value “226” of the node 1) to 535.

Similarly, an “end value in a responsible hash value range”
ofthe node whose “node name” is “node 3” is “842”. It means
that the responsible hash value range of “node 3 is 536 to
842. Similarly, an “end value in a responsible hash value
range” of the node whose “node name” is “node 4™ is “1231”.
An “end value in a responsible hash value range” of the node
“the node name whose “node name” is “node 5”is “2145”. An
“end value in a responsible hash value range” of the node
whose “node name” is “node 6” is “2352”.

An “end value in a responsible hash value range” of the
node whose “node name” is “node 7” is “3125”. An “end
value in a responsible hash value range” of the node whose
“node name” is “node 8” is “4231”. An “end value in a
responsible hash value range” of the node whose ‘“node
name” is “node 9” is “4845”. An “end value in a responsible
hash value range” of the node whose “node name” is “node
107 is “5252”.

An “end value in a responsible hash value range” of the
node whose “node name” is “node 11” is “6625”. An “end
value in a responsible hash value range” of the node whose
“node name” is “node 12” is “6752”. An “end value in a
responsible hash value range” of the node whose ‘“node
name” is “node 999” is “64523”. An “end value in a respon-
sible hash value range” of the node whose “node name” is
“node 1000~ is “65123”.

A column 603 for “life-and-death information” stores
information indicating a life-and-death state of each node.
Specifically, it indicates whether each node is alive (ALIVE
state), dead (DEAD state) or substituted (SUBSTITUTED
state). The ALIVE state indicates that the information storage
node operates normally. The DEAD state indicates that the
information storage node does not operate normally due to a
failure or any other reason, does not accept any access, and its
responsible data is not relocated in other information storage
node (before being relocated).

A storage node in the SUBSTITUTED state means that
after it is once in the DEAD state, its responsible data is now
relocated in other information storage node in the ALIVE
state. If an information storage node inthe ALIVE state enters
the DEAD state due to a failure or any other reason.

Then, if its responsible data is relocated in other informa-
tion storage node, it changes to the SUBSTITUTED state.
These states and state changes will be described below in
detail.

US 9,305,072 B2

13

In the node management table 248 of the example, the
“life-and-death information” for the node whose “node
name” is the “node 17 is “ALIVE”. The “life-and-death infor-
mation” for the node whose “node name” is the “node 2” is
“ALIVE”. The “life-and-death information” for the node
whose “node name” is the “node 3” is “ALIVE”. The “life-
and-death information” for the node whose “node name” is
the “node 4” is “ALIVE”.

The “life-and-death information” for the node whose
“node name” is the “node 57 is “ALIVE”. The “life-and-death
information” for the node whose “node name” is the “node 6”
is “ALIVE”. The “life-and-death information™ for the node
whose “node name” is the “node 7” is “ALIVE”. The “life-
and-death information” for the node whose “node name” is
the “node 8” is “ALIVE”. The “life-and-death information”
for the node whose “node name” is the “node 9” is “DEAD”.

The “life-and-death information” for the node whose
“node name” is the “node 10” is “ALIVE”. The “life-and-
death information” for the node whose “node name” is the
“node 11” is “SUBSTITUTED”. The “life-and-death infor-
mation” for the node whose “node name” is the “node 12” is
“ALIVE”. The “life-and-death information” for the node
whose “node name” is the “node 999 is “ALIVE”. The
“life-and-death information” for the node whose “node
name” is the “node 1000 is “ALIVE”.

FIG. 7 is a view showing an example of the data storage
table 218 that the information storage nodes have. The data
storage table 218 not only stores a value of each key value pair
stored by an information storage node, but also associates the
storage node storing the key value pair, with the key value
pair, and stores it.

FIG. 7 illustrates the data storage table 218 retained by the
information storage node 2 (102) in FIG. 1. A column 701 for
“Key” is a column indicating a key of a corresponding item.
A row (entry) 706 is a description of a pair for which the “key”
is “Tokyo”. A row 707 is a description of a pair for which the
“key” is “Paris”. A row 708 is a description of a pair for which
the “key” is “London”.

A row 709 is a description of a pair for which the “key” is
“Berlin”. A row 710 is a description of a pair for which the
“key”is “Washington”. A row 711 is a description of a pair for
which the “key” is “San Jose”. A row 712 is a description of
apair for which the “key” is “Shanghai”. A row 713 indicates
that in-between entries are omitted. A row 714 is a description
of a pair for which the “key” is “Hiroshima”. A row 715 is a
description of a pair for which the “key” is “Nagasaki”.

A column 702 for “Original Node” describes the names of
nodes storing original data. For example, the “original node”
of'the pair for which the “key” is “Tokyo” is the “node 2. The
“original node” ofthe pair for which the “key” is “Paris™ is the
“node 2”. The “original node” of the pair for which the “key”
is “London” is the “node 2”. The “original node” of the pair
for which the “key” is “Berlin” is the “node 2”.

The “original node” of the pair for which the “key” is
“Washington” is the “node 62”. The “original node” of the
pair for which the “key” is “San Jose” is the “node 4”. The
“original node” of the pair for which the “key” is “Shanghai”
is the “node 475”. The “original node” of the pair for which
the “key” is “Hiroshima™ is the “node 754”. The “original
node” of the pair for which the “key” is “Nagasaki” is the
“node 352”.

A column 703 for “First Replica Storage Node” describes
the names of nodes storing the first replicas. For example, the
“first replica storage node” of the pair for which the “key” is
“Tokyo™ is the “node 4. The “first replica storage node” of

20

25

40

45

55

14
the pair for which the “key” is “Paris” is the “node 521”. The
“first replica storage node” of the pair for which the “key” is
“London” is the “node 36”.

The “first replica storage node” of the pair for which the
“key” is “Berlin” is the “node 965”. The “first replica storage
node” of the pair for which the “key” is “Washington” is the
“node 2”. The “firstreplica storage node” of the pair for which
the “key” is “San Jose” is the “node 2”. The “first replica
storage node” of the pair for which the “key” is “Shanghai” is
the “node 234”. The “first replica storage node” of the pair for
which the “key” is “Hiroshima” is the “node 854”. The “first
replica storage node” of the pair for which the “key” is
“Nagasaki” is the “node 120”.

A column 704 for “Second Replica Storage Node”
describes the names of nodes storing the second replicas. For
example, the “second replica storage node” of the pair for
which the “key” is “Tokyo” is the “node 7. The “second
replica storage node” of the pair for which the “key” is “Paris”
is the “node 543”. The “second replica storage node” of the
pair for which the “key” is “London” is the “node 339”.

The “second replica storage node” of the pair for which the
“key” is “Berlin” is the “node 145”. The “second replica
storage node” of the pair for which the “key” is “Washington”
is the “node 4”. The “second replica storage node” of the pair
for which the “key” is “San Jose” is the “node 305”.

The “second replica storage node” of the pair for which the
“key” is “Shanghai” is the “node 2”. The “second replica
storage node” of the pair for which the “key” is “Hiroshima”
is the “node 2”. The “second replica storage node” of the pair
for which the “key” is “Nagasaki” is the “node 2”.

A column 705 for “Value” stores the values for the keys.
For example, the “value” of the pair for which the “key” is
“Tokyo” is “sunny”. The “value” of the pair for which the
“key” is “Paris” is “rainy”. The “value” of the pair for which
the “key” is “London” is “cloudy”. The “value” of the pair for
which the “key” is “Berlin” is “snowy”.

The “value” of the pair for which the “key” is “Washing-
ton”is “sunny”. The “value” of the pair for which the “key” is
“San Jose” is “sunny”. The “value” of the pair for which the
“key” is “Shanghai” is “clear”. The “value” of the pair for
which the “key” is “Hiroshima” is “cloudy”. The “value” of
the pair for which the “key” is “Nagasaki” is “rainy”.

FIG. 8 illustrates the data storage table 218 retained by the
information storage node 4 (104) in F1G. 1. A column 801 for
“Key” stores keys of entries. A row (entry) 806 is a descrip-
tion of the pair for which the “key” is “San Jose”. A row 807
is a description of the pair for which the “key” is “Tokyo”. A
row 808 is a description of a pair for which the “key” is
“Ottawa”. A row 809 is a description of the pair for which the
“key” is “Washington”. A row 810 indicates the following
entries are omitted in FIG. 8.

A column 802 for “Original Node” describes the names of
nodes storing original data. For example, the “original node”
of the pair for which the “key” is “San Jose” is the “node 4”.
The “original node” of the pair for which the “key” is “Tokyo”
is the “node 2”. The “original node” of the pair for which the
“key”is “London” is the “node 2. The “original node” of the
pair for which the “key” is “Ottawa” is the “node 475”. The
“original node” of the pair for which the “key” is “Washing-
ton” is the “node 62”.

A column 803 for “First Replica Storage Node” describes
the names of nodes storing the first replicas. For example, the
“first replica storage node” of the pair for which the “key” is
“San Jose” is the “node 2”. The “first replica storage node” of
the pair for which the “key” is “Tokyo” is the “node 4”. The
“first replica storage node” of the pair for which the “key” is

US 9,305,072 B2

15

“Ottawa” is the “node 4. The “first replica storage node” of
the pair for which the “key” is “Washington” is the “node 2”.

A column 804 for “Second Replica Storage Node”
describes the names of nodes storing the second replicas. For
example, the “second replica storage node” of the pair for
which the “key” is “San Jose” is the “node 305”. The “second
replica storage node” of the pair for which the “key” is
“Tokyo” is the “node 7. The “second replica storage node” of
the pair for which the “key” is “Ottawa” is the “node 256”.
The “second replica storage node” of the pair for which the
“key” is “Washington” is the “node 4”.

A column 805 for “Value” stores the values for the keys.
For example, the “value” of the pair for which the “key” is
“San Jose” is “sunny”. The “value” of the pair for which the
“key”is “Tokyo” is “sunny”. The “value” of the pair for which
the “key” is “Ottawa” is “clear”. The “value” of the pair for
which the “key” is “Washington™ is “sunny”.

As described above, the administration node 204 performs
processing by using the node management table 248, and the
information storage nodes 201, 202, 203 performs processing
by using the data storage table 218. In this and other embodi-
ments, information (information for node management or
information and the like related to data being stored) to be
used by the information storage system may be represented in
any data structure, without depending on a data structure. For
example, a data structure which is appropriately selected
from a table, a list, a database, or a queue can store informa-
tion. The information to be used by the information storage
system is stored in a corresponding data storage area in a data
memory.

In the following, processing to be performed by the infor-
mation storage system 209 will be described with reference to
the flow charts in FIG. 9 to FIG. 17. FIG. 9 and FIG. 10 show
examples of processing when a node N which was normally
operating has died due to a failure or any other reason.

FIG. 11 and FIG. 12 show examples of processing of
writing data into the information storage node of the infor-
mation storage system 209. FIG. 13 to FIG. 15 show
examples of processing of reading data from the information
storage node of the information storage system 209. FIG. 16
and FIG. 17 show examples of processing of inserting a node
X between a node N (N being a node number) and a node
N+1.

(Interruption of Information Storage Node)

First, with reference to FIG. 9, processing to be performed
by the information storage system 209 when the node N dies
will be described. When an information storage node dies,
respective numbers of replications for data (typically, includ-
ing a plurality of original data, a plurality of first replicas, and
a plurality of second replicas) stored by the information stor-
age node decrease only by 1 from a defined value (3 in this
example).

In order to return the decreased replication value to the
defined value, the information storage system 209 performs
relocation of the data stored in the dead information storage
node by replicating data identical to the data stored in the dead
information storage node (its responsible data) to other infor-
mation storage node, and returns the decreased replication
value to the defined value.

FIG. 9 is a flow chart showing an example of processing of
the information storage system 209 when the node N dies,
focusing on processing of the administration node 4. In step
S901, the node management program 245 of the administra-
tion node 204 detects that the node N has died.

Since technologies of detecting that the node N has died are
widely known and thus a detailed description thereof will be
omitted. Typically, the node management program 245 trans-

10

15

20

25

30

35

40

45

50

55

60

65

16

mits to each information storage node a reply request for
life-and-death monitoring, and determines that the informa-
tion storage node has died when it does not receive a normal
reply to the request.

In step S902, the node management program 245 changes
the value of the life-and-death information field in the node N
entry from “ALIVE” to “DEAD” in the node management
table 248. The node management program 245 notifies the
data relocation management program 247 of the administra-
tion node 204 that the node N has entered “DEAD” state.

In step S903, the data relocation management program 247
refers to the node management table 248 to identify informa-
tion storage nodes whose life-and-death field is “ALIVE”,
and transmits to those information storage nodes an instruc-
tion for extracting data related to the node N of data stored by
them and to replicate the extracted data to the information
storage nodes adjacent to them (adjacent information storage
nodes in the ALIVE state) in the clockwise direction.

Although they are not shown, the administration node 204
has addresses of respective information storage nodes and
transmits the above-mentioned instruction to the addresses of
the identified information storage nodes. The administration
node 204 may transmit information specifying ALIVE infor-
mation storage nodes adjacent to data replication destinations
to respective information storage nodes in the ALIVE state or
only to information storage nodes whose adjacent informa-
tion storage nodes are not in the ALIVE state. Alternatively,
each information storage node may obtain and retain a repli-
cate of the node management table 248 from the administra-
tion node 204 on aregular basis and/or at the time of updating.

In step S904, the data relocation management program 247
waits till replications of the all information storage nodes end.
Each information storage node can refer to the data storage
table 218 to identify data related to the dead node N. The
processing of extracting related data by the information stor-
age nodes will be described in detail with reference to the flow
chart in FIG. 10.

When the replications of the all information storage nodes
end, the numbers of replications of respective data stored in
the node N return to the defined value of 3. When the repli-
cation ends, each information storage node notifies the
administration node 204 accordingly. In step S905, when
receiving the notification on the end of replications of all
information storage nodes, the data relocation management
program 247 changes the entry for the node N in the life-and-
death field in the node management table 248 from “DEAD”
to “SUBSTITUTED”.

Then, in step S906, the data relocation management pro-
gram 247 instructs a node N+1 which is adjacent to the node
N in the clockwise direction to collect data. Specifically, the
data relocation management program 247 instructs the node
N+1 to collect data (original data, a first replica and a second
replica) for which the node N was responsible, from the
information storage nodes whose life-and-death field in the
node management table 248 is ALIVE. Specifically, the
administration node 204 transmits to the node N+1 a data
collection instruction involving identifiers of the information
storage nodes in the ALIVE state.

In response to the instruction from the administration node
204, the data relocation processing program 217 of the node
N+1 starts to collect the node N's responsible data. Specifi-
cally, the data relocation processing program 217 requests the
information storage nodes in the ALIVE state which are
shown by the instruction from the administration node 204 to
transmit the replicated data (“related data” in step S903) to the
node N+1.

US 9,305,072 B2

17

Upon receipt of the request, the information storage nodes
transmit the replicated data (data identical to the data which
the node N stored (was responsible for)) to the requesting
node N+1. Then, the data relocation processing program 217
changes the field of the “node N to the “node N+1” in the
data storage table 218. In addition, the operation may take
such a form that it is performed by an instruction from the data
relocation management program 247 after execution of step
S907.

In step S907, when the node N+1 which is adjacent to the
node N in the clockwise direction collects all of the node N’s
responsible data (receives the notification from the data relo-
cation processing program 217 of the node N+1), the data
relocation management program 247 deletes the entry for the
node N from the node management table 248. The data relo-
cation management program 247 may change the life-and-
death field in the entry for the node N from “SUBSTI-
TUTED” to “DELETED”. With the above processing, the
processing that the information storage system 209 should
perform when the node N dies can be fulfilled.

Next, processing of the information storage node to extract
the “related data” from data owned by it will be described
with reference to FIG. 10. The processing is performed in step
S904 in the flow chart of FIG. 9. Of data owned by the
information storage node, the “related data” is the data a
replicate of which the information storage node must transmit
to the adjacent information storage node because other infor-
mation storage node has died.

FIG. 10 is a view showing a flow chart of an example of
processing to extract the related data of data owned by the
information storage node. In step 51001, the data relocation
processing program 217 of the information storage node
extracts, from the data storage table 218, an entry in which the
“original node” is the dead node N and the “first replica
storage node” is itself.

In step S1002, the data relocation processing program 217
extracts, from the data storage table 218, an entry in which the
“first replica storage node” is the dead node N and the “second
replica storage node” is itself.

In step S1003, the data relocation processing program 217
extracts, from the data storage table 218, an entry in which the
“second replica storage node” is the dead node N and the
“original node” is itself.

In step S1004, the data relocation processing program 217
assembles the entries extracted in the above-mentioned 3
steps from S1001 to S1003 and stores them as the “related
data” in the main memory 213. With the above processing, the
information storage node can extract the “related data” of the
data owned by it.

What has been described above is the flow of the data
relocation processing involved in the deletion of the informa-
tion storage node. In order to describe the processing in a
more understandable manner, by way of example, processing
when the information storage node 2 has died (i.e., processing
till the information storage node 2 changes from the ALIVE
state to the DEAD state and then to the SUBSTITUTED state)
will be explained.

First, in step S901, the node management program 245 of
the administration node 204 detects that the node 2 has died.
In step S902, the node management program 245 changes the
life-and-death field of the node 2 in the node management
table 248 from “ALIVE” to “DEAD”.

In step S903, the node management program 245 instructs
the information storage nodes whose life-and-death field in
the node management table 248 is “ALIVE” to extract the

25

30

35

40

45

18

“related data”, of the data stored by them and replicate it to the
information storage node adjacent to them in the clockwise
direction.

In the following, by way of example, processing of the
node 4 will be described. The extraction was described in
detail with reference to the flow chart of FIG. 10. The data
storage table 218 which stores data of the node 4 was shown
in FIG. 8. A specific description will be given. The processing
to be described hereinafter with reference to FIG. 10 is per-
formed by the data relocation processing program 217 of the
node 4. In step S1001 in the flow chart of FIG. 10, the node 4
extracts an entry in which the “original node” is the dead node
2 and the “first replica storage node” is itself (information
storage node 4) from the data storage table 218 of FIG. 8. For
example, an entry 807 whose key is “Tokyo” is extracted. This
is the data “Tokyo” 112 in FIG. 1.

In step S1002, the node 4 extracts an entry in which the
“first replica storage node” is the dead node 2 and the “second
replica storage node” is itself (information storage node 4)
from the data storage table 218. For example, an entry 809
whose key is “Washington™ is extracted.

In step S1003, the node 4 an entry in which the “second
replica storage node” is the dead node 2 and the “original
node” is itself (node 4) extracts from the data storage table
218. Such an entry does not exist in the entries clearly shown,
except the omitted entry shown by the row 810.

In step S1004, the node 4 assembles the entries extracted
from the above-mentioned 3 steps from step S1001 to step
S1103 and stores them as the “related data” in a storage area
of'the main memory. In fact, the node 4 extracts the data with
the key “Tokyo” and the data with the key “Washington™ as
the “related data”. The data corresponds to the data set 121B
in FIG. 1.

In this example, the node 4 replicates the extracted data to
the adjacent node in the clockwise direction. Basically, the
node 4 replicates the data to the node 5. This means that the
data set 121B in FIG. 1 is replicated to the storage area 124.
The node 5 may reserve the storage area 124 in advance or
actively reserve it when performing replication.

If the node 5 reserves the storage area 124 in advance, the
node 5 may reserve it as an “area for data of the node 4 for
which “the original node is the dead node 2™ or an “area for
some replicated data to be replicated from the node 4”. Alter-
natively, the node 5 may reserve it as an “area to replicate
some replicated data from an information storage node some-
where”.

In addition, as examples of data then to be replicated simi-
larly, FIG. 1 shows data to be replicated from the node 3 to the
node 4, data to be replicated from the node 5 to the node 6,
data to be replicated from the node 6 to the node 7, and data to
be replicated from the node 1 to the node 3.

As described above, in this system, a data set being iden-
tical to a data set of an arbitrary category retained by one
information storage node, and belonging to other category is
distributed to and stored in a plurality of information storage
nodes, rather than being concentrated in one other informa-
tion storage node. In particular, use of a hash function whose
bias is small enables data stored in one storage information
node to be averagely allocated to all other information storage
nodes.

Suppose that in the system, the node 2 has data of 3 TB.
When the node 2 dies, an amount of data owned by any
information storage node other than the node 2, such as the
node 4 in the above example, as “data related to the node 27,
is 3 GB which is one-thousandth of 3 TB (1000 is the total
number of nodes). In step S903, the information storage

US 9,305,072 B2

19

nodes replicate the data to the adjacent information storage
nodes. If the network is 1 Gbps, transfer time in the replica-
tion is about 24 seconds.

In fact, time taken to return the replication value from 2 to
3 is about 1/333 compared with the conventional example.
Furthermore, in the processing described above, since load is
evenly generated in the entire system rather than being con-
centrated only in some information storage nodes, there is no
fluctuation in a response to a request from a client due to a
reason like the conventional example. In addition, the prob-
ability of failure occurrence in information storage nodes due
to the replication can also be reduced.

In the processing described above, following the data rep-
lications by the plurality of information storage nodes, the
node N+1 collects the node N’s responsible data. Since the
replication value has already been recovered, the node N+1
can perform the data collection, depending on status of the
system.

Thus, the embodiment can reduce the time needed to
recover the replication value than ever before when the num-
ber of nodes for storing data in the system decreases. In
addition, the embodiment can control concentration of sys-
tem load till the replication value is recovered. Additionally,
the embodiment can level any fluctuation in the system
response time till the system returns to its steady state.

As described with reference to FIG. 10, information stor-
age nodes extract data related to a node use of which is
interrupted, in accordance with regulations set in advance.
The regulations associate each category of data with other
category. The information storage nodes identify a category
of'each data stored in the node use of which is interrupted and
replicate data of a category associated with that category to
other information storage nodes.

In the above example, the category of the original data is
associated with the category of the first replica, the category
of the first replica is associated with the category of the
second replica, and the category of the second replica is
associated with the category of the original data. The asso-
ciation is one example, and other correspondence may be
acceptable.

The above configuration detects that the node N has died,
determines that the node N is an unusable node, and stops use
of the information storage node. Unlike this, the administra-
tion node 204 may detect that the response time of the node N
is longer or that CPU load of the node N is higher than a
threshold. Alternatively, the administration node 204 may
detect any condition which is different from other normal
condition.

Although the above configuration detects that the node N
has died and determines that the node N is an unusable node,
it may determine that the node N is an unusable node from a
state of any information storage node other than the node N.
For example, if the node N belongs to a specific node group G,
the information storage system may detect that the node
group G enters a state which is different from the normal state,
determine that the node N or one or more information storage
nodes belonging to the node group G are unusable nodes, and
perform replication. The information storage system may
detect that the node N enters a state which is different from the
normal state, determine that some or all of the information
storage nodes in the node group G are unusable nodes, and
perform replication.

In the above example, the node N died due to an unpredict-
able failure. Even if the node N is stopped as scheduled, the
data replication as described above can be similarly applied.
In this case, the node N may operate from step S901 to step
8907, following which use of the node N will be stopped.

10

15

20

25

30

35

40

45

50

55

60

65

20

In the above processing, respective information storage
nodes replicate data related to the node N to the storage
information nodes which are located in logically adjacent
positions. Relative logical positions of the information stor-
age nodes for which respective information storage nodes
replicate data may be other positions. For example, they may
be every other or every third information storage node, or an
information storage node on the opposite side of the logical
circle. Alternatively, information storage nodes at data repli-
cation destinations may be determined with some function f.

If it is possible to learn a replication destination node later,
the information storage node may use a method for determin-
ing an information storage node for replication destination by
using a random number or by considering load of each infor-
mation storage node and replicating to a node with small load.
In this case, a table may be provided so that a name of a node
(or a node ID) which is a destination of replication can be
learned from a name of anode (or a node ID) which is a source
of replication.

With autonomous replication of data (extraction of repli-
cated data and replication to other information storage nodes)
involved in interruption of use an information storage node
being performed by information storage nodes, prompt and
efficient processing is enabled. Unlike this, the administration
node 204 may instruct each information storage node on
information storage nodes which are destinations of replica-
tions.

In the above configuration, the information storage nodes
replicate data related to the node N to the information storage
nodes located at specified relative positions. Information stor-
age nodes at replication destinations may store data identical
to the replicated data. In this case, the replication value of the
identical data remains unchanged at 2 and does not revert to 3.
Thus, a new replication destination node is determined with a
method similar to a method to be described below with ref-
erence to FIG. 11. This secures the replication value of 3.

Since the possibility (frequency of occurrence) that repli-
cation destination nodes store identical data is small, the data
may be replicated to specified information storage nodes,
irrespective of whether or not there is the identical data.
Unlike this, if information storage nodes at specified relative
positions store the identical data, the information storage
node may replicate the data to an information storage node
which s different from it, for example, an information storage
node adjacent to the information storage node storing the
identical data. By referring to the data storage table 218, the
information storage node can identify the information storage
node which stores the data identical to the data to be repli-
cated.

In the above configuration, the node N+1 adjacent to the
node N in the clockwise direction is newly responsible for the
node N’s responsible range. Unlike this, for example, a node
X (which has been reserved as a spare) is added in place of the
node N, and the node X may collect data for which the
information storage node N was originally responsible, and
then perform the processing for which the node N was origi-
nally responsible. This enables the information storage sys-
tem to return to the state prior to the interruption of the use of
the node N. A plurality of existing information storage nodes
or a plurality of information storage nodes including a newly
added information storage node may collect data.

Inthe above example, the node N+1 acquires data identical
to the replicated data from the information storage node in
which the data is replicated. The node N+1 may collect node
N's responsible data, from any information storage node. For
example, from the information storage nodes at the replica-
tion destinations, the node N+1 can acquire data stored in

US 9,305,072 B2

21

their storage areas (for example, the storage arca 124 of the
node 5 in FIG. 1). In addition to this, the information storage
system 209 may finish the processing without collecting
responsible data of the interrupted node in one information
storage node, after causing a plurality of information storage
nodes to replicate the data related to the interrupted node
(after recovering the replication value).

(Writing of Data)

In the following, processing of writing data to the informa-
tion storage system 209 will be described with reference to
FIG. 11 and FIG. 12. First, with reference to FIG. 11, pro-
cessing of the read-write management program 246 of the
administration node 204 to determine an information storage
node in which data is stored (written) from a key value will be
described.

FIG. 11 shows a flow chart of processing of the read-write
management program 246 to determine a storage node from a
key value. In step S1101, the read-write management pro-
gram 246 calculates a hash value of akey from a defined hash
function and a key received from a client.

Furthermore, the read-write management program 246
uses the hash value to search an original node in the node
management table 248. As a hash function to be used by the
read-write management program 246, any one of or a com-
bination of a plurality (of functions) of MDS5, SHA-1, SHA-
256 and the like may be used. Any function other than them
may also be used.

In step S1102, the read-write management program 246
calculates a hash value (computed value) by using an arith-
metic expression which combines “1” to the key and substi-
tutes the value into the hash function. The hash function to be
used is identical to the function for determination of the
original node. The read-write management program 246 uses
the hash value to search a candidate for a first replica storage
node in the node management table 248. The computation of
combining “1” to the key generates a character string “Tokyo
17 if the key is “Tokyo”, for example, and a character string
“New York 17 if the key is “New York”, for example.

In step S1103, the read-write management program 246
checks if the original node is equal to the candidate for the
first replica storage node. If the original node and the candi-
date for the first replica storage node are equal (S1103: YES),
the read-write management program 246 proceeds to step
S1104. If the original node and the candidate for the first
replica storage node are not equal (S1103: NO), the read-
write management program 246 proceeds to step S1105.

In step S1104, the read-write management program 246
determines that the first replica storage node is a node adja-
cent to the candidate for the first replica storage node in the
clockwise direction. In step S1105, the read-write manage-
ment program 246 determines that the first replica storage
node is the candidate node for the first replica storage node.

In step S1106, the read-write management program 246
combines “2” to the key to calculate its hash value. The hash
function is same as the above-mentioned function. Using the
hash value, the read-write management program 246 searches
a candidate for a second replica storage node in the node
management table 248.

In step S1107, the read-write management program 246
checks if the original node or the first replica storage node is
equal to the candidate for the second replica storage node. If
the original node or the first replica storage node is equal to
the candidate for the second replica storage node (S1107:
YES), the read-write management program 246 proceeds to
step S1108. If the candidate for the second replica storage
node is not equal to any of the original node and the first

25

40

45

55

22

replica storage node (S1107: NO), the read-write manage-
ment program 246 proceeds to step S1109.

In step S1108, the read-write management program 246
determines that a new candidate for the second replica storage
node is a node adjacent to the last candidate for the second
replica storage node in the clockwise direction. In step S1109,
the read-write management program 246 determines that the
second replica storage node is the candidate node for the
second replica storage node.

With the processing described above, the storage node can
be determined from the key value. In addition, in the above
example, although the “key”, the “value obtained by combin-
ing 1 to the key”, and the “value obtained by combining 2 to
the key” were used to search the “original node”, the “first
replica storage node”, and the “second replica storage node”,
other character string may be combined or a key character
string may be changed according to a certain law. For
example, the read-write management program 246 can shift
the character strings, specifically, change “Tokyo” to
“OKYOT” or “KYOTO”.

Alternatively, rather than changing the key, the read-write
management program 246 may use a different hash value to
determine a different candidate node. For example, it can
calculate MD5 (“New York™) to search the original node,
calculate SHA-1 (“New York™) to search the first replica
storage node, and calculate SHA-256 (“New York™) to search
the second replica storage node. Or, the read-write manage-
ment program 246 may take a form of a combination of them.

In the configuration example, the system determines a plu-
rality of information storage nodes for storing identical data,
by repeatedly substituting a value into the same hash function
for different numbers of times. For example, the configura-
tion is such that “SHA1 (KEY)” is used to determine the
original node, “SHA1 (SHA1 (KEY))” is used to determine
the first replica node, and “SHA1 (SHA 1 (SHA 1 (KEY)))”
is used to determine the second replica node. This enables
even a system with a large replication value to easily and
appropriately determine a plurality of information storage
nodes for storing data. In addition, this also makes it possible
to easily cope with an increase in the replication value of the
system.

Next, processing of the client 207 in writing of data will be
described with reference to FIG. 12. Processing of other
clients is also similar. FIG. 12 shows a flow chart for the client
207 to write a value (and a key) by using the key. The flow
chart includes steps of the administration node 204 and the
client 207.

In step S1201, the read-write client program 277 transmits
a “key” to the administration node 204, requesting it to show
3 information storage nodes in which data should be stored. In
step S1202, the administration node 204 determines from the
“key” that the 3 information storage nodes in which data
should be stored are an “original node”, a “first replica storage
node” and a “second replica storage node”.

In step S1203, using the node management table 248, the
administration node 204 checks if the “original node”, the
“first replica storage node”, and the “second replica storage
node” are all “ALIVE”.

If the administration node 204 can confirm from the node
management table 248 that the “original node”, the “first
replica storage node”, and the “second replica storage node”
are all “ALIVE” (S1203: YES), the processing proceeds to
step S1204. If the administration node 204 cannot confirm
from the node management table 248 that any one of the
“original node”, the “first replica storage node”, or the “sec-
ond replica storage node” is “ALIVE” (S1203: NO), the pro-
cessing proceeds to step S1209.

US 9,305,072 B2

23

In step S1204, the administration node 204 replies to the
client 207 that the nodes to which data should be written are
the 3 nodes: “original node”, the “first replica storage node”,
and the “second replica storage node”.

In step S1205, the read-write client program 277 of the
client 207 instructs the 3 nodes shown as the nodes to which
the data should be written to write a “key”, a “value”, an
“original node name”, a “first replica storage node name”,
and a “second replica storage node name”.

In step S1206, the read-write client program 277 checks if
the administration node 204 has received a reply from the 3
information storage nodes that it could normally perform the
writing. If it receives a reply from the 3 information storage
nodes that it could normally perform the writing (S1206:
YES), the processing proceeds to step S1207. If it cannot
receive a reply from any one of the 3 information storage
nodes that it could normally perform the writing (S1206:
NO), the processing proceeds to step S1208.

In step S1207, the read-write client program 277 deter-
mines that the writing is successful. In step S1208, the read-
write client program 277 determines that the writing has
failed. In step S1209, the read-write client program 277 deter-
mines that the writing has failed. A description of processing
of coping with a judgment on failure of writing is omitted
since it is not highly relevant to the present invention. What
has been described above is the flow of the processing. In
order to describe the processing in a more understandable
manner, by way of example, processing of the client 207 to
store the data “Tokyo” 110 will be explained. First, in step
S1201, the client 207 transmits the “key” to the administra-
tion node 204, requesting it to show 3 information storage
nodes to which data should be stored.

Then, in step S1202, the administration node 204 searches
from “Tokyo”, which is the key*, nodes in which the data
should be stored. This is the processing illustrated in FIG. 11.
The administration node 204 determines the “original node”
by substituting the key “Tokyo” into the hash function, deter-
mines the “first replica storage node” by substituting the key
“Tokyo 1” into the hash function, and determines the “second
replica storage node” by substituting the key “Tokyo 2” into
the hash function. (Processing when the hash values collide is
as described in FIG. 11.)

In this example, suppose that “300” is obtained as the hash
value for “Tokyo”, “1000” as the hash value for “Tokyo 17,
and “3000” as the hash value for “Tokyo 2”. Then, in step
S1203, using the node management table 248, the adminis-
tration node 204 checks if the original node, the first replica
storage node, and the second replica storage node are all in the
ALIVE state.

The node management table 248 of FIG. 6 shows that the
node 2 is responsible for the range from 227 to 535. The
administration node 204 determines that the “original node”
with the hash value being 300 is the information storage node
2. The life-and-death information thereof is “ALIVE”. Simi-
larly, the “first replica storage node” with the hash value being
1000 is the information storage node 4. The life-and-death
information thereofis “ALIVE”. Similarly, the life-and-death
information of the “second replica storage node” with the
hash value being 3000 is “ALIVE”. Since the 3 information
storage nodes are “ALIVE”, the processing proceeds to step
S1204.

Then, in step S1204, the administration node 204 replies to
the client 207 that the original node, the first replica storage
node, and the second replica storage node are the node 2, the
information storage node 4, and the information storage node
7, respectively.

10

15

20

25

30

35

40

45

50

55

60

65

24

Then, in step S1205, the client 1207 instructs the 3 infor-
mation storage nodes (the information storage node 2, the
information storage node 4, the information storage node 7)
shown as the information storage node into which data should
be written to write “Tokyo” as the “key”, “fine” as the “value”,
the “node 2” as the “original node name”, the “node 4” as the
“first replica storage node name”, and the “node 7 as the
“second replica storage node name”.

Then, in step S1206, the administration node 204 receives
from the 3 information storage nodes (the node 2, the node 4,
the node 7) a reply that it could normally perform the writing.
When the administration node 204 receives from the 3 infor-
mation storage nodes the reply that it could normally perform
the writing, the processing proceeds to step S1207. Lastly, in
step S1207, the client 207 determines that the writing is
successful. With the above processing, the client 207 can
write the data “Tokyo” 110 into the information storage sys-
tem 209.

Ifthe information storage node which was selected with the
method described above and into which data is written is in
the DEAD state or the SUBSTITUTED state, the processing
of writing fails. Unlike this, if the selected information stor-
age node into which data is written is in the SUBSTITUTED
state, the information storage node 209 may write data to a
specific information storage node.

For example, the administration node 204 returns identifi-
ers of 2 ALIVE information storage nodes to the client 207.
The client 207 writes data into the 2 information storage
nodes. Like the processing described with reference to FIG. 9
and FIG. 10, the information storage node which stores data
of'a category (for example, the second replica) pre-associated
with a category (for example, the first replica) of the data
which should be stored in the information storage node in the
SUBSTITUTED state replicates the data in an information
storage node to an adjacent logical position.

(Reading of Data)

In the following, processing of the clients 207, 208 to read
data from the information storage system 209 will be
described with reference to FIG. 13 to FIG. 15. In the follow-
ing, an example of processing of the client 207 will be
described. FIG. 13 shows a flow chart of an example of
processing whereby the client 207 reads information from the
information storage system 209. In step S1301, the read-write
client program 207 of the client 207 conveys the “key” to the
administration node 204, requesting it to show nodes from
which data should be read.

In step S1302, the administration node (the read-write
management program 246) searches nodes from which data
should be read, from information storage nodes in the ALIVE
state, through processing (to be described below) as shown in
FIG. 14. In step S1303, the read-write management program
246 checks if the information storage node from which data
should be read is found. If the information storage node from
which data should be read is not found (S1303: NO), the
processing proceeds to step S1304. If information storage
node from which data should be read is found (S1303: YES),
the processing proceeds to step S1305.

In step S1304, the read-write management program 246
searches a node from which data should be read, from infor-
mation storage nodes at backup destinations of information
storage nodes in the SUBSTITUTED state, through process-
ing as shown in FIG. 15 (to be described below). In step
S1305, the administration node 204 checks if a nodes from
which data should be read have been found. If the node from
which data should be read has not been found (S1305: NO),
the processing proceeds to the step S1306. If the node from

US 9,305,072 B2

25
which data should be read has been found (S1305: YES), the
processing proceeds to step S1308.

In step S1306, the read-write management program 246
replies to the client 207 that the information storage node
from which data should be read is not found. In step S1307,
the read-write client program 207 of the client 270 determines
that the processing of reading has failed.

In step S1308, the read-write management program 246
replies to the client 207 about the information storage nodes
from which data should be read. In step S1309, the read-write
client program 277 of the client 207 uses the key to read the
value from the node from which data should be read. With the
above processing, the client 207 can read information from
the information storage system 209.

Then, processing of using a key to find an information
storage node from which data should be read, from nodes in
ALIVE state will be described hereinafter with reference to
FIG. 14.FIG. 14 shows a flow chart of processing in which the
administration node 204 uses a key to find a node from which
data should be read, from nodes in ALIVE state.

In step S1401, the read-write management program 246 of
the administration node 204 determines an original node, a
first replica storage node, and a second replica storage node
from the key. Details of the processing are as per the descrip-
tion with reference to FIG. 11.

In step S1402, the read-write management program 246
checks whether the original node is “ALIVE” or not. If the
original node is not “ALIVE” (S1402: NO), the processing
proceeds to step S1403. If the original node is “ALIVE”
(S81402: YES), the processing proceeds to the step S1408.

In step S1403, the read-write management program 246
checks whether the first replica storage node is “ALIVE” or
not. If the first replica storage node is not “ALIVE” (5S1403:
NO), the processing proceeds to step S1404. If the first replica
storage node is “ALIVE” (S1403: YES), the processing pro-
ceeds to step S1407.

In step S1404, the read-write management program 246
checks whether the second replica storage node is “ALIVE”
or not. If the second replica storage node is not “ALIVE”
(81404: NO), the processing proceeds to step S1405. If the
second replica storage node is “ALIVE” (S1404: YES), the
processing proceeds to step S1406.

In step S1405, the read-write management program 246
determines that information storage node from which data
should be read is not found. In step S1406, the read-write
management program 246 determines that the second replica
storage node is the information storage node from which data
should be read.

In step S1407, the read-write management program 246
determines that the first replica storage node is the informa-
tion storage node from which data should be read. In step
S1408, the read-write management program 246 determines
that the original node is the information storage node from
which data should be read.

In step S1409, the read-write management program 246
returns a node name of the information storage node from
which data should be read, as a return value (Ifit is not found,
the read-write management program 246 returns a reply that
“the information storage node is not found”.) With the above
processing, the read-write management program 246 can find
a node from which data should be read, from nodes in the
ALIVE state, by using a key.

Next, processing in which the administration node 204
finds a node from which data should be read from information
storage nodes in the SUBSTITUTED state by using a key will
be described with reference to FIG. 15. FIG. 15 is a flow chart
showing an example of processing of using a key to find an

20

25

30

35

40

45

50

55

26

information storage node from which data should be read
from information storage nodes which are backup destina-
tions of information storage nodes in the SUBSTITUTED
state.

In step S1501, from a key, the read-write management
program 246 determines an original node, a first replica stor-
age node, and a second replica storage node. Details of the
processing are as shown in FIG. 11.

In step S1502, the read-write management program 246
checks whether the original node is “SUBSTITUTED” or
not. If the original node is not “SUBSTITUTED” (S1502:
NO), the processing proceeds to step S1503. If the original
nodeis “SUBSTITUTED” (S1502: YES), the processing pro-
ceeds to step S1508.

In step S1503, the read-write management program 246
checks whether or not the first replica storage node is “SUB-
STITUTED”. If the first replica storage node is not “SUB-
STITUTED” (S1503: NO), the processing proceeds to step
S1504. If the first replica storage node is “SUBSTITUTED”
(S1503: YES), the processing proceeds to step S1507.

In step S1504, the read-write management program 246
checks whether the second replica storage node is “SUBSTI-
TUTED?” or not. If the second replica storage node is not
“SUBSTITUTED” (S1504: NO), the processing proceeds to
step S1505. If the first replica storage node is “SUBSTI-
TUTED” (S1504: YES), the processing proceeds to step
S1506.

In step S1505, the read-write management program 246
determines that an information storage node from which data
should be read is not found. In step S1506, the read-write
management program 246 determines that a node adjacent to
the original node is the information storage node from which
data should be read.

In step S1507, the read-write management program 246
determines that a node adjacent to the second replica storage
node is the information storage node from which data should
be read. In step S1508, the read-write management program
246 determines that a node adjacent to the first replica storage
node is the information storage node from which data should
be read.

In step S1509, the read-write management program 246
returns a node name of the information storage node from
which data should be read, as a return value. (If it is not found,
the read-write management program 246 replies that “the
information storage node is not found”.) With the above pro-
cessing, the read-write management program 246 can find the
node from which data should be read, from the nodes in the
SUBSTITUTED state, by using the key.

What has been described is the flow of the processing. In
order to describe the processing in a more understandable
manner, by way of example, processing of the client 207 to
read the data “Tokyo” 110 will be explained. First, in step
S1301, the client 207 transmits “Tokyo”, which is the “key”,
to the administration node 204, requesting it to show an
information storage node from which data should be read.

Then, in step S1302, through the processing as shown in
FIG. 14, the administration node 204 searches the informa-
tion storage node, from which data should be read, from
information storage nodes in the ALIVE state. In step S1401,
the administration node 204 calculates hash values from
“Tokyo”, “Tokyo 17, and “Tokyo 2”, and obtains the “node
2”, the “node 47, and the “node 7” from the node management
table 248.

In step S1402, the administration node 204 searches a
life-and-death state of the node 2 in the node management
table 248. Since the node 2 is in the “ALIVE” state, the

US 9,305,072 B2

27

administration node determines in step S1408 that the infor-
mation storage node from which data should be read is the
information storage node 2.

In step S1303, the administration node 204 checks if the
information storage node from which data should be read is
found. Since it is found, the processing proceeds to step
S1305. In step S1305, the administration node 204 checks if
the information storage node from which data should be read
is found. Since it is found, the processing proceeds to step
S1308.

In step S1308, the administration node 204 replies to the
client 207 that the information storage node from which data
should be read is the information storage node 2. Then, in step
S1309, the client 207 uses the key “Tokyo” to read a value
from the information storage node 2 from which data should
be read. With the above processing, the client 207 can read
information from the information storage system 209.
(Addition of Information Storage Node)

Next, processing of inserting a node X between the node N
and the node N+1 will be described with reference to FIG. 16
and FIG. 17. FIG. 16 is a flow chart showing an example of
processing of inserting a node X between the node N and the
node N+1.

In step S1601, the node management program 245 of the
administration node 204 determines an “end value of a
responsible hash value range” of the node X. This is a value
between an end value of a responsible hash value range of the
node N and an end value of a responsible hash value range of
the node N+1.

Instep S1602, the node management program 245 instructs
the information storage nodes whose life-and-death state field
in the node management table 248 is “ALIVE” to extract data
to which the node X is related of data owned by them and
replicate (transmit) it to the node X. The responsible hash
value range of the node X is added to the instruction.

In step S1603, respective information storage nodes which
receive the instruction extract data to which the node X is
related from the data owned by them, and replicate it to the
node X. The processing will be described with reference to
the flow chart in FIG. 17.

In step S1701, the data relocation processing program 217
of each information storage node extracts, from the data stor-
age table 218, an entry in which the original node is the node
N+1 and the first replica storage node is itself. In addition, the
data relocation processing program 217 calculates a hash
value for a key extracted by each information storage node
and extracts data in the responsible hash value range of the
node X. In this example, the data relocation processing pro-
gram 217 knows a computation method for determining the
original node, the first replica storage node, and the second
replica storage node (specified in the program).

In step S1702, the data relocation processing program 217
of each information storage node extracts, from the data stor-
age table 218, an entry in which the first replica storage node
is the node N+1 and the second replica storage node is itself.
In addition, the data relocation processing program 217 cal-
culates a hash value for a key of data extracted by each
information storage node and extracts data in the responsible
hash value range of the node X.

In step S1703, the data relocation storage program 217
extracts, from the data storage table 218, an entry in which the
second replica storage node is the node N+1 and the original
node is itself. Furthermore, the data relocation processing
program 217 calculates a hash value for a key of data
extracted by each information storage node and extracts data
in the responsible hash value range of the node X.

10

15

20

25

30

35

40

45

50

55

60

65

28

In step S1704, the data relocation processing program 217
assembles the entries extracted inthe 3 steps described above,
and stores them as “related data” in a storage area of the main
storage device. The data relocation processing program 217
replicates the data extracted from step S1701 to step S1704 to
the node X. The data relocation processing program 217
inserts the node X as well as updates the data storage table
218.

With reference back to FIG. 16, in step S1604, the node
management program 245 of the administration node 204
waits for termination of replications to the node X by all of the
instructed information storage nodes. In step S1605, the node
management program 245 adds an entry for the node X
between the node N and the node N+1 in the node manage-
ment table 248, enters an end value of responsible hash value
range, and enters “ALIVE” in the life-and-death field.

In step S1606, the node management program 245 instructs
the node N+1 to delete data for which the node X is newly
responsible. With the above processing, the processing of
inserting the node X between the node N and the node N+1
can be fulfilled. In contrast to the processing of replicating
data only from the node N+1 to the node X, the processing
enables distribution of the replications among a plurality of
information storage nodes, thus being able to reducing load
per information storage node.
<Second Embodiment>

The embodiment describes processing to be performed
when a failure further occurs in the course of the processing to
recover the replication value in the first embodiment. FIG. 18
is a flow chart showing an example of processing when a node
M dies during execution of the step S904 of the flow chart
shown in FIG. 9.

In step S1801, the node management program 245 of the
administration node 204 detects that the node M has died
during execution of the step S904. In step S1802, the node
management program 245 changes the life-and-death infor-
mation field of the entry for the node M in the node manage-
ment table 248 from “ALIVE” to “DEAD”.

In step S1803, the data relocation management program
247 of the administration node 204 instructs information
storage nodes whose life-and-death information field is
“ALIVE” in the node management field 248 to extract data
related to both node N and node M of data owned by them, and
replicate it to the information storage nodes adjacent to them.
The data relocation management program 247 gives an
instruction that this instruction takes precedence over the
instruction for replicating of the step 903.

The replication value of data for which the node N and the
node M are both responsible (for example, data for which the
node N is the original node and the node M is the first replica
storage node) decreases from 2 to 1 when the node M dies. On
the one hand, the replication value of data which is related to
only one of the node N or the node M (only one of them is
responsible for), specifically, data of the original data and
either the first replica or the second replica stored by only one
of them is 2.

Thus, since the replication value of the data for which the
node N and the node M are both responsible is smaller than
the replication value of other data, it is important to increase
the replication value of the former data in preference to the
latter data. Hence, as one method, the embodiment gives
priority to extraction and replication of the data related to both
node M and node N of the data owned by the information
storage node, over the instruction for replicating in the step
S903.

In the data storage table 218, each information storage
node searches an entry including both node N and node M and

US 9,305,072 B2

29

replicates the entry to the information storage node adjacent
to it. The entry including both the node N and the node M
satisfies the regulation of “related data” described for any of
the node N or the node M, with reference to FIG. 10. In step
S1804, the administration node 204 waits for termination of
the replications of data related to both node M and node N by
all the information storage nodes. With the steps described so
far, the replication value of the data whose number of repli-
cation is 1 is increased to 2 only by 1.

In step S1805, the data relocation management program
247 instructs the information storage nodes whose life-and-
death field in the node management table 248 is “ALIVE” to
extract data related to the node M of data owned by them and
replicate it to the information storage nodes adjacent to them.
The instruction only applies to the data that has not been
replicated, specifically, the data for which the node N is not
responsible, of the data related to the node M.

Specification of data related to the node M follows the
regulation shown in FIG. 10. Specifically, as described with
reference to FIG. 10, the first replica, the second replica and
the original data of the original data, the first replica and the
second replica stored by the node M are the data related to the
node M. In entries of these data, entries which do not include
the node N are the entries that have not been replicated.

The data relocation management program 247 may be in
such a form that it gives priority to either data only node M is
related or data to only node N is related to. Shortly, the
information storage node may be in such a form that it first
replicates either the data only node M is related to or the data
only node N is related to.

In the data storage table 218, each information storage
node replicates, to the adjacent information storage node, an
entry which includes the node M but does not include the
node N and which satisfies the regulation described with
reference to FIG. 10. In step 1806, the data relocation man-
agement program 247 waits termination of step S1805 by all
of the information storage nodes.

In step S1807, the data relocation management program
247 changes the life-and-death information in the entry for
the node M in the node management table 248 from “DEAD”
to “SUBSTITED”. With the steps described so far, the repli-
cation value of the data for which the node M is responsible
and for which the node N is not responsible can be returned to
the defined number of 3.

After step S1806 and step S1807 in the flow chart of FIG.
9, in step S1808, the data relocation management program
247 instructs the node M+1 which is adjacent to the node M
to collect data for which the node M was originally respon-
sible from information storage nodes whose life-and-death
information field in the node management table 248 is
“ALIVE”.

Specifically, the data relocation management program 247
transmits to the node M+1 the instruction for collecting data,
together with information identifying the “ALIVE” informa-
tion storage nodes. The instruction may precede or follow the
instruction for collecting the node N’s responsible data. The
node M+1 requests the information storage nodes in the
ALIVE state to transmit (replicate) the replicated node M’s
responsible data (the data replicated in response to death of
the node M).

In step S1809, when the node M+1 adjacent to the node M
collects all the data for which the node M was originally
responsible, the data relocation management program 247
deletes the entry for the node M in the node management table
248. The data relocation management table 247 may change
the value in the life-and-death information field of the entry
for the node M from “SUBSTITUTED” to “DELETED”.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Although the above processing replicates data identical to
data stored in both node N and node M to only one informa-
tion storage node, the data may be replicated to 2 different
information storage nodes. This can return the replication
value of the data stored in both node N and node M to 3.

What has been described so far is the flow of the process-
ing. In order to describe the processing in a more understand-
able manner, by way of example, processing when the node 5
dies during execution of the step 904 for the dead node 2 will
be explained hereinafter.

In step S1801, during execution of the step 904, the admin-
istration node 4 detects that the information storage node 5
has died. Then, in step S1802, the administration node 204
changes the life-and-death field for the node 5 in the node
management table 248 to “DEAD”.

Then, in step S1803, the administration node 204 instructs
information storage nodes whose life-and-death information
field in the node management table 248 is “ALIVE” to extract
data related to both node 2 and node 5 and replicate it to the
information storage nodes adjacent to them. The administra-
tion node 204 gives an instruction that this instruction takes
precedence over the instruction of the step S903.

Upon receipt of the instruction, respective information
storage nodes extract an entry in which 2 fields of the original
node, the first replica storage node, and the second replica
storage node store the node 2 and the node 5 from the data
storage table 218, and transmit the entry to adjacent informa-
tion storage nodes. In step S1804, the administration node
204 waits for termination of the replications of the data for
which both node 2 and node 5 are responsible, by all of the
information storage nodes.

In step S1805, the administration node 204 instructs infor-
mation storage nodes whose life-and-death information field
in the node management table 248 is “ALIVE” to extract data
related to the node 5 of data owned by them, and replicate it to
the information storage nodes adjacent to them. The instruc-
tion only applies to data which has not been replicated, spe-
cifically, data for which the node 2 is not responsible, of data
related to the node 5.

In the data storage table 218, respective information stor-
age nodes extract an entry which is related to the node 5 from
entries which do not include the node 2 and transmit the entry
to adjacent information storage nodes. In step S1806, the
administration node 204 waits for termination of the replica-
tions of the data related to the node M which has not been
replicated, by all of the information storage nodes.

In step S1807, the administration node 204 changes the
life-and-death field of the entry for the node 5 in the node
management table 248 from “DEAD” to “SUBSTITUTED”.

After the step S904 and the step S905 (replication of the
node 2’s responsible data and updating of the node manage-
ment table) in the flow chart of FIG. 9, in step S1808, the
administration node 204 instructs a node 6 adjacent to the
node 5 to collect data for which the node 5 was originally
responsible, from the information storage nodes whose life-
and-death information field in the node management table
248 is “ALIVE”. Specifically, the administration node 204
transmits to the node 6 an instruction for collecting data,
together with information identifying the “ALIVE” informa-
tion storage nodes.

In step S1809, when the node 6 adjacent to the node 5
collects all the data for which the node 5 was originally
responsible, the administration node 204 deletes the entry for
the node 5 in the node management table 248.

Time taken from step S1801 to step S1804 will be calcu-
lated. Similar to the conventional examples of calculation,
suppose that the number of information storage nodes is

US 9,305,072 B2

31

1000, each information storage node is connected to a net-
work of 1 Gbps, and each information storage node retains 1
TB (terabyte) of original data. (In fact, the data of 1 DB is
present in each node’s responsible range.)

“Data which should be replicated” instructed to each node
in step S1803 is one-thousands of data which is one-thou-
sands of 3TB, i.e., about 3 MB. Time taken to replicate this is
about 0.024 seconds. Compared with 2 hours and 13 minutes
needed in the conventional examples, it is about one three-
hundred-thousandths. In fact, in a very short period of time, it
is possible to escape from the situation of “the replication
value of 1” in which the risk of data loss is high.

While the embodiments of the present invention have been
so far described, the present invention shall not be limited to
the embodiments described above. Those skilled in the art can
easily change, add, or transform each element of the embodi-
ments within a scope of the present invention.

Although the present invention is preferable to the key
value system, it can also be applied to any information storage
system other than this. For example, it can apply to a system
which manages data by a group consisting of 3 or more data
items or a system which manages data by a single data item.
Computations to determine an information storage node to
which data is stored may be performed by using any function
other than the hash function.

Each configuration, function, processing section, process-
ing means, and the like as described above may be imple-
mented by hardware through designing of some or all of them
in an integrated circuit, for example. Information on a pro-
gram, a table, a file, and the like which implement each
function can be stored in a storage device such as a memory,
a hard disk, an SSD (SolidStateDrive), or a persistent data
storage medium such as an IC card, an SC card, a DVD, and
the like.

It is possible to replace a part of a configuration of one
embodiment with a configuration of another embodiment, as
well as to add a configuration of other configuration to a
configuration of one embodiment. For a part of a configura-
tion of each embodiment, it is possible to add/delete/replace
other configuration.

What is claimed is:
1. An information storage system for storing received data
including an original data content and a defined number of
replicated data content having the same data content as the
original data content, the system comprising:
a network;
a plurality of information storage nodes communicatively
connected by the network, wherein each of the plurality
of information storage nodes is assigned a different
range of values; and
an administration node communicatively connected with
the plurality of information storage nodes and config-
ured to:
select a different one of the plurality of information storage
nodes for storing the original data content and replicated
data content by:
substituting some or all information contained in the
received data content into a different arithmetic
expression for each of the original data content and
replicated data content,

computing each of the different arithmetic expressions
to generate a plurality of calculated values, and

selecting one of the plurality of information storage
nodes to store each respective one of the original data
content and replicated data content based on each of
the generated plurality of calculated values and the

10

15

20

30

35

40

45

50

55

60

65

32

range of values assigned to each of the plurality of
information storage nodes,
wherein, on a condition that a first one of the plurality of
information storage nodes is interrupted, each of the
plurality of information storage nodes is configured to:
identify whether the information storage node contains
data that has an identical content to data stored in the
first information storage node, and
replicate the identified data to another one of the plural-
ity of information storage nodes selected according to
a predetermined sequence.
2. The information storage system according to claim 1,
wherein, on the condition that the first one of the plurality of
information storage nodes is interrupted, one or more of the
plurality of information storage nodes in the information
storage system and a newly added information storage node
collects the data that has the identical content to the data
stored in the first information storage node.
3. The information storage system according to claim 1,
wherein:
the administration node includes management information
that associates each of the generated plurality of calcu-
lated values from each of the different arithmetic expres-
sions with one of the plurality of information storage
nodes,
the each of the plurality of arithmetic expressions includes
a hash function, and

the administration node is configured to refer to the man-
agement information when selecting the one of the plu-
rality of information storage nodes to store each respec-
tive one of the original data content and the replicated
data content based on each of the generated plurality of
calculated values and the range of values assigned to
each of the plurality of information storage nodes.

4. The information storage system according to claim 1,
wherein:

each of the received original data content and replicated

data content includes a data pair consisting of a first data
item and a second data item, and

wherein the some or all of the information contained in the

received data content that is substituted into the different
arithmetic expression for each of the original data con-
tent and replicated data content is the first data item in
the data pair.

5. The information storage system according to claim 1,
wherein

the defined number is a value of 3 or higher, and

on a condition that a second one of the plurality of infor-

mation storage nodes is interrupted while the identified
data is being replicated to the other one of the plurality of
identified storage nodes on the condition that the first
one of the plurality of information storage nodes is inter-
rupted, each of the plurality of information storage
nodes is configured to replicate data, to another one of
the plurality of information storage nodes, having iden-
tical content to data stored in both the first and second
information storage nodes.

6. The information storage system according to claim 1,
wherein:

logical positions associated with the calculated values

from the arithmetic expressions are set for the plurality
of information storage nodes, and

the predetermined sequence prescribes that each of the

plurality of information storage nodes replicates the data
to another information storage node located at a specific
position relative to the respective information storage
node.

US 9,305,072 B2

33

7. The information storage system according to claim 6,
wherein:

the administration node is configured to determine a logi-

cal position of a newly added information storage node
and assign a part of a responsible range of one of the
plurality of information storage nodes to the newly
added information storage node, and

the newly added information storage node is configured to

replicate data from any of the plurality of information
storage nodes that store data having an identical content
to data in the assigned responsible range.

8. A data replication method in an information storage
system for storing received data including an original data
content and a defined number of replicated data content hav-
ing the same data content as the original data content, the
method comprising:

selecting a different one of a plurality of information stor-

age nodes for storing the original data content and each

of the defined number of replicated data content,

wherein each of the plurality of information storage

nodes is assigned a different range of values, wherein the

selecting comprises:

substituting some or all information contained in the
received data content into a different arithmetic
expression for each of the original data content and
replicated data content,

computing each of the different arithmetic expressions
to generate a plurality of calculated values, and

selecting one of the plurality of information storage
nodes to store each respective one of the original data
content and replicated data content based on each of
the generated plurality of calculated values and the
range of values assigned to each of the plurality of
information storage nodes; and information nodes,
respectively;

on a condition that a first one of the plurality of information

storage nodes is interrupted:

identifying whether the information storage node con-
tains data that has an identical content to data stored in
the first information storage node, and

replicating the identified data to another one of the plu-
rality of information storage nodes selected according
to a predetermined sequence.

15

20

30

35

40

34

9. The data replication method according to claim 8 further
comprising, on a condition that the first one of the plurality of
information storage nodes is interrupted, collecting the data
that has the identical content to the data stored in the first
information storage node into one or more of the plurality of
information storage nodes in the information storage system
and a newly added information storage node.

10. The data replication method according to claim 8,
wherein:

the defined number is a value of 3 or higher, and

the data replication method further comprises, on a condi-

tion that a second one of the plurality of information
storage nodes is interrupted while the identified data is
being replicated to the other one of the plurality of stor-
age nodes on the condition that the first one of the plu-
rality of information storage nodes is interrupted repli-
cating data, to another one of the plurality of information
storage nodes, having identical content to data stored in
both the first and second information storage nodes.

11. The data replication method according to claim 8,
wherein:

logical positions associated with the calculated values

from the arithmetic expressions are set for the plurality
of information storage nodes, and

the predetermined sequence prescribes that each of the

plurality of information storage nodes replicates the data
to another information storage node located at a specific
position relative to the respective information storage
node.

12. The data replication method according to claim 11
further comprising:

determining a logical position of a newly added informa-

tion storage node;

assigning a part of a responsible range of one of the plu-

rality of information storage nodes to the newly added
information storage node; and

replicating data from any of the plurality of information

storage nodes that store data having an identical content
to data in the assigned responsible range to the newly
added information storage node.

#* #* #* #* #*

